Skip to main content
Log in

Hydrophobic ionic liquid-modified graphene via fluid-dynamic process for ion-to-electron transducers for all-solid-state potentiometric sensors

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Owing to the great demand for portable and wearable chemical sensors, the development of all-solid-state potentiometric ion sensors is highly desirable considering their simplicity and stability. However, most ion sensors are challenged by the penetration of water and gas molecules into ion-selective membranes, causing unstable and undesirable sensing performances. In this study, a hydrophobic ionic liquid-modified graphene (Gr) sheet was prepared using a fluid dynamics-induced exfoliation and functionalization process. The high hydrophobicity and electrical double-layer capacitance of Gr make it a potential solid-state ion-to-electron transducer for the development of potentiometric sodium-ion (Na+) sensors. The as-prepared Na+ sensors effectively prevented the formation of the water layer and penetration of gas species, resulting in stable and high sensing performances. The Na+ sensors showed a Nernstian sensitivity of 58.11 mV/[Na+] with a low relative standard deviation (0.46), fast response time (5.1 s), good selectivity (K < 10−4), and good durability. Furthermore, the Na+ sensor demonstrated its feasibility in practical applications by measuring accurate and reliable ion concentrations of artificial human sweat and tear samples, comparable to a commercial ion meter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Parrilla M, Cuartero M, Sánchez SP, Rajabi M, Roxhed N, Niklaus F, Crespo GA (2019) Wearable all-solid-state potentiometric microneedle patch for intradermal potassium detection. Anal Chem 91:1578–1586. https://doi.org/10.1021/acs.analchem.8b04877

    Article  CAS  Google Scholar 

  2. Abisegapriyan KS, Alluri NR, Sharma K, Maria Joseph Raj NP, Kim S (2022) A mechano-driven multi-ion sensor based on piezo-ionophoretic coupling for real time perspiration monitoring. Appl Mater Today 29:101679. https://doi.org/10.1016/j.apmt.2022.101679

    Article  Google Scholar 

  3. Nakata S, Shiomi M, Fujita Y, Arie T, Akita S, Takei K (2018) A wearable pH sensor with high sensitivity based on a flexible charge-coupled device. Nat Electron 1:596–603. https://doi.org/10.1038/s41928-018-0162-5

    Article  Google Scholar 

  4. Gao F, Liu C, Zhang L, Liu T, Wang Z, Song Z, Cai H, Fang Z, Chen J, Wang J, Han M, Wang J, Lin K, Wang R, Li M, Mei Q, Ma X, Liang S, Gou G, Xue N (2023) Wearable and flexible electrochemical sensors for sweat analysis: a review. Microsyst Nanoeng 9:1. https://doi.org/10.1038/s41378-022-00443-6

    Article  Google Scholar 

  5. Chandran N, Janardhanan P, Bayal M, Pilankatta R, Nair SS (2022) Development of a paper printed colorimetric sensor based on Cu-Curcumin nanoparticles for evolving point-of-care clinical diagnosis of sodium. Sci Rep 12:6247. https://doi.org/10.1038/s41598-022-09852-z

    Article  CAS  Google Scholar 

  6. Zdrachek E, Bakker E (2019) Potentiometric sensing. Anal Chem 91:2–26. https://doi.org/10.1021/acs.analchem.8b04681

    Article  CAS  Google Scholar 

  7. Ding J, Qin W (2020) Recent advances in potentiometric biosensors. Trends Anal Chem 124:115803. https://doi.org/10.1016/j.trac.2019.115803

    Article  CAS  Google Scholar 

  8. Choi D, Li Y, Cutting GR, Searson PC (2017) A wearable potentiometric sensor with integrated salt bridge for sweat chloride measurement. Sens Actuators B Chem 250:673–678. https://doi.org/10.1016/j.snb.2017.04.129

    Article  CAS  Google Scholar 

  9. Wang S, Wu Y, Gu Y, Li T, Luo H, Li L, Bai Y, Li L, Liu L, Cao Y, Ding H, Zhang T (2017) Wearable sweatband sensor platform based on gold nanodendrite array as efficient solid contact of ion-selective electrode. Anal Chem 89:10224–10231. https://doi.org/10.1021/acs.analchem.7b01560

    Article  CAS  Google Scholar 

  10. Shao Y, Ying Y, Ping J (2020) Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev 49:4405–4465. https://doi.org/10.1039/C9CS00587K

    Article  CAS  Google Scholar 

  11. Cuartero M, Crespo GA (2018) All-solid-state potentiometric sensors: a new wave for in situ aquatic research. Curr Opin Eletrochem 10:98–106. https://doi.org/10.1016/j.coelec.2018.04.004

    Article  CAS  Google Scholar 

  12. An Q, Gan S, Xu J, Bao Y, Wu T, Kong H, Zhong L, Ma Y, Song Z, Niu L (2019) A multichannel electrochemical all-solid-state wearable potentiometric sensor for real-time sweat ion monitoring. Electrochem Commun 107:106553. https://doi.org/10.1016/j.elecom.2019.106553

    Article  CAS  Google Scholar 

  13. Park HJ, Jeong J, Yoon JH, Son SG, Kim YK, Kim DH, Lee KG, Choi BG (2020) Preparation of ultrathin defect-free graphene sheets from graphite via fluidic delamination for solid-contact ion-to-electron transducers in potentiometric sensors. J Colloid Interface Sci 560:817–824. https://doi.org/10.1016/j.jcis.2019.11.001

    Article  CAS  Google Scholar 

  14. Zhang D, Yang Z, Li P, Pang M, Xue Q (2019) Flexible self-powered high-performance ammonia sensor based on Au decorated MoSe2 nanoflowers driven by single layer MoS2-flake piezoelectric nanogenerator. Nano Energy 65:103974. https://doi.org/10.1016/j.nanoen.2019.103974

    Article  CAS  Google Scholar 

  15. Hu J, Stein A, Bühlmann P (2016) Rational design of all-solid-state ion-selective electrodes and reference electrodes. Trends Anal Chem 76:102–114. https://doi.org/10.1016/j.trac.2015.11.004

    Article  CAS  Google Scholar 

  16. Boeva ZA, Lindfors T (2016) Few-layer graphene and polyaniline composite as ion-to-electron transducer in silicone rubber solid-contact ion-selective electrodes. Sens Actuators B Chem 224:624–631. https://doi.org/10.1016/j.snb.2015.10.054

    Article  CAS  Google Scholar 

  17. Mendecki L, Mirica KA (2018) Conductive metal−organic frameworks as ion-to-electron transducers in potentiometric sensors. ACS Appl Mater Interfaces 10:19248–19257. https://doi.org/10.1021/acsami.8b03956

    Article  CAS  Google Scholar 

  18. Rousseau CR, Bühlmann P (2021) Calibration-free potentiometric sensing with solid-contact ion-selective electrodes. Trends Anal Chem 140:116277. https://doi.org/10.1016/j.trac.2021.116277

    Article  CAS  Google Scholar 

  19. Han T, Mattinen U, Bobacka J (2019) Improving the sensitivity of solid-contact ion-selective electrodes by using coulometric signal transduction. ACS Sens 4:900–906. https://doi.org/10.1021/acssensors.8b01649

    Article  CAS  Google Scholar 

  20. Liu H, Li Q, Zhang S, Yin R, Liu X, He Y, Dai K, Shan C, Guo J, Liu C, Shen C, Wang X, Wang N, Wang Z, Wei R, Guo Z (2018) Electrically conductive polymer composites for smart flexible strain sensors: a critical review. J Mater Chem 6:12121. https://doi.org/10.1039/C8TC04079F

    Article  CAS  Google Scholar 

  21. Naveen MH, Gurudatt NG, Shim Y (2017) Applications of conducting polymer composites to electrochemical sensors: a review. Appl Mater Today 9:419–433. https://doi.org/10.1016/j.apmt.2017.09.001

    Article  Google Scholar 

  22. Kil MS, Park HJ, Yoon JH, Jang J, Lee KG, Choi BG (2022) Stretchable graphene conductor based on fuid dynamics and its application to fexible conductometric sensor. Carbon Lett 32:1791–1798. https://doi.org/10.1007/s42823-022-00403-0

    Article  Google Scholar 

  23. Jiang C, Yao Y, Cai Y, Ping J (2019) All-solid-state potentiometric sensor using single-walled carbon nanohorns as transducer. Sens Actuators B Chem 283:284–289. https://doi.org/10.1016/j.snb.2018.12.040

    Article  CAS  Google Scholar 

  24. Arduini F, Cinti S, Mazzaracchio V, Scognamiglio V, Amine A, Moscone D (2022) Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio)sensor design. Biosens Bioelectron 156:112033. https://doi.org/10.1016/j.bios.2020.112033

    Article  CAS  Google Scholar 

  25. Nag A, Mitra A, Mukhopadhyay SC (2017) Graphene and its sensor-based applications: a review. Sens Actuator A Phys 270:177–194. https://doi.org/10.1016/j.sna.2017.12.028

    Article  CAS  Google Scholar 

  26. Vicentini FC, Ravanini AE, Figueiredo-Filho LCS, Iniesta J, Banks CE, Fatibello-Filho O (2015) Imparting improvements in electrochemical sensors: evaluation of different carbon blacks that give rise to significant improvement in the performance of electroanalytical sensing platforms. Electrochim Acta 157:125–133. https://doi.org/10.1016/j.electacta.2014.11.204

    Article  CAS  Google Scholar 

  27. Koskun Y, Şavk A, Şen B, Şen F (2018) Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites. Anal Chim Acta 1010:37–43. https://doi.org/10.1016/j.aca.2018.01.035

    Article  CAS  Google Scholar 

  28. Schroeder V, Savagatrup S, He M, Lin S, Swager TM (2019) Carbon nanotube chemical sensors. Chem Rev 119:599–663. https://doi.org/10.1021/acs.chemrev.8b00340

    Article  CAS  Google Scholar 

  29. Liu Y, Liu Y, Yan R, Gao Y, Wang P (2020) Bimetallic AuCu nanoparticles coupled with multi-walled carbon nanotubes as ion-to-electron transducers in solid-contact potentiometric sensors. Electrochim Acta 331:135370. https://doi.org/10.1016/j.electacta.2019.135370

    Article  CAS  Google Scholar 

  30. Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS (2019) A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv 9:8778–8881. https://doi.org/10.1039/C8RA09577A

    Article  CAS  Google Scholar 

  31. Thuy NTD, Zhao G, Wang X, Awuah E, Zhang L (2022) potassium ion-selective electrode with a sensitive ion-to-electron transducer composed of porous laser-induced graphene and MoS2 fabricated by one-step direct laser writing. Electroanalysis 34:1–14. https://doi.org/10.1002/elan.202200194

    Article  CAS  Google Scholar 

  32. Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127. https://doi.org/10.1016/j.pmatsci.2017.07.004

    Article  CAS  Google Scholar 

  33. Tiwari SK, Sahoo S, Wang N, Huczko A (2020) Graphene research and their outputs: status and prospect. J Sci Adv Mater Devices 5:10–29. https://doi.org/10.1016/j.jsamd.2020.01.006

    Article  Google Scholar 

  34. Liu Y, Liu Y, Meng Z, Qin Y, Jiang D, Xi K, Wang P (2020) Thiol-functionalized reduced graphene oxide as self-assembled ion-to-electron transducer for durable solid-contact ion-selective electrodes. Talanta 208:120374. https://doi.org/10.1016/j.talanta.2019.120374

    Article  CAS  Google Scholar 

  35. Li J, Qin W (2020) An integrated all-solid-state screen-printed potentiometric sensor based on a three-dimensional self-assembled graphene aerogel. Microchem J 159:105453. https://doi.org/10.1016/j.microc.2020.105453

    Article  CAS  Google Scholar 

  36. Park HJ, Jeong J, Son SG, Kin SJ, Lee M, Kim HJ, Jeong J, Hwang SY, Park J, Eom Y, Choi BG (2021) Fluid-dynamics-processed highly stretchable, conductive, and printable graphene inks for real-time monitoring sweat during stretching exercise. Adv Funct Mater 31:2011059. https://doi.org/10.1002/adfm.202011059

    Article  CAS  Google Scholar 

  37. Jeong J, Jin SB, Park HJ, Park SH, Jeon H, Suh H, Park Y, Seo D, Hwang SY, Kim DH, Choi BG (2020) Large-scale fast fluid dynamic processes for the syntheses of 2D nanohybrids of metal nanoparticle-deposited boron nitride nanosheet and their glycolysis of poly(ethylene terephthalate). Adv Mater Interfaces 7:2000599. https://doi.org/10.1002/admi.202000599

    Article  CAS  Google Scholar 

  38. Son SG, Park HJ, Kim S, Kim SJ, Kil MS, Jeong J, Lee Y, Eom Y, Hwang SY, Park J, Choi BG (2023) Ultra-fast self-healable stretchable bio-based elastomer/graphene ink using fluid dynamics process for printed wearable sweat-monitoring sensor. Chem Eng J 454:140443. https://doi.org/10.1016/j.cej.2022.140443

    Article  CAS  Google Scholar 

  39. Jeong J, Kang HG, Kim H, Hong SB, Jeon H, Hwang SY, Seo D, Kwak BE, Han Y, Choi BG, Kim DH (2018) Hydraulic power manufacturing for highly scalable and stable 2D nanosheet dispersions and their film electrode application. Adv Funct Mater 28:1802952. https://doi.org/10.1002/adfm.201802952

    Article  CAS  Google Scholar 

  40. Song Y, Min J, Gao W (2019) Wearable and implantable electronics: moving toward precision therapy. ACS Nano 13:12280–12286. https://doi.org/10.1021/acsnano.9b08323

    Article  CAS  Google Scholar 

  41. Yoon JH, Park HJ, Park SH, Lee KG, Choi BG (2020) Electrochemical characterization of reduced graphene oxide as an ion-to-electron transducer and application of screen-printed all-solid-state potassium ion sensors. Carbon Lett 30:73–80. https://doi.org/10.1007/s42823-019-00072-6

    Article  Google Scholar 

  42. Yoon JH, Kim S, Eom Y, Koo JM, Cho H, Lee TJ, Lee KG, Park HJ, Kim YK, Yoo H, Hwang SY, Park J, Choi BG (2019) Extremely fast self-healable bio-based supramolecular polymer for wearable real-time sweat-monitoring sensor. ACS Appl Mater Interfaces 11:46165–46175. https://doi.org/10.1021/acsami.9b16829

    Article  CAS  Google Scholar 

  43. Kim SJ, Kil MS, Park HJ, Yoon JH, Kim J, Bae NH, Lee KG, Choi BG (2022) Highly stretchable and conductive carbon thread incorporated into elastic rubber for wearable real-time monitoring of sweat during stretching exercise. Adv Mater Technol. https://doi.org/10.1002/admt.202201042

    Article  Google Scholar 

  44. Kim DS, Jeong J, Park HJ, Kim YK, Lee KG, Choi BG (2021) Highly concentrated, conductive, defect-free graphene ink for screen-printed sensor application. Nano-Micro Lett 13:87. https://doi.org/10.1007/s40820-021-00617-3

    Article  CAS  Google Scholar 

  45. Buck RP, Lindner E (1994) Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994). Pure Appl Chem 66:2527–2536. https://doi.org/10.1351/pac199466122527

    Article  CAS  Google Scholar 

  46. Pingarrón JM, Labuda J, Barek J, Brett CMA, Camões MF, Fojta M, Hibbert DB (2020) Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019). Pure Appl Chem 92:641–694. https://doi.org/10.1515/pac-2018-0109

    Article  CAS  Google Scholar 

  47. Maccà C (2004) Response time of ion-selective electrodes current usage versus IUPAC recommendations. Anal Chim Acta 512:183–190. https://doi.org/10.1016/j.aca.2004.03.010

    Article  CAS  Google Scholar 

  48. Bakker E, Pretsch E, Bühlmann P (2000) Selectivity of potentiometric ion sensors. Anal Chem 72:1127–1133. https://doi.org/10.1021/ac991146n

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT (No. 2021R1A2C1009926); the Technology Innovation Program (or Industrial Strategic Technology Development Program) (20015577) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea); and the Nanomedical Devices Development Project of NNFC in 2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong Gill Choi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, E.S., Park, H.J., Yoon, J.H. et al. Hydrophobic ionic liquid-modified graphene via fluid-dynamic process for ion-to-electron transducers for all-solid-state potentiometric sensors. Carbon Lett. 33, 1561–1569 (2023). https://doi.org/10.1007/s42823-023-00521-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00521-3

Keywords

Navigation