Skip to main content
Log in

Investigation on synergistic effect of rGO and carbon quantum dots-embedded ZnO hollow spheres for improved photocatalytic aqueous pollutant removal process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of ternary ZnO hollow sphere/carbon quantum dots/reduced graphene oxide (ZnO/CQDs/r-GO) nanocomposites were successfully prepared via solvothermal technique in the presence of the polyethylene glycol 400 (PEG 400) as a solvent. The structural details of as-prepared ZnO/CQDs/r-GO nanocomposites were characterized by powder X-ray diffraction analysis. The morphological properties of the composite were analyzed using field emission scanning microscopy (FE-SEM). The visible light absorption ability of the as-prepared pristine and ternary nanocomposites was examined using UV–visible (UV–Vis) spectrophotometry. The photocatalytic activity of ZnO, ZnO/CQDs, ZnO/r-GO, and ZnO/CQDs/r-GO nanostructures were evaluated for the degradation of organic pollutants such as methylene orange (MO), rhodamine B (RhB), and methylene blue (MB). The different composites with various amounts of reduced graphene oxide (r-GO) and carbon quantum dots (CQDs) were synthesized to enhance photocatalytic activity. The ZnO/CQDs/r-GO composites showed excellent potential for photocurrent generation compared with ZnO, ZnO/CQDs and ZnO/r-GO under-stimulated sunlight. The effect of various parameters such as the effect of reaction temperature, catalyst concentration, pH, and concentration of MB dye has been also studied. The photo-assisted catalytic degradation properties of the catalyst after five cycles exhibit high stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. K. Sana, A. Malik, Environmental and health effects of textile industry wastewater, in Environmental deterioration and human health. (Springer, Dordrecht, 2013), pp. 55–71

    Google Scholar 

  2. U. Förstner, G.T. Wittmann, Metal Pollution in the Aquatic Environment (Springer, New York, 2012)

    Google Scholar 

  3. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 92, 407–418 (2011)

    Article  CAS  Google Scholar 

  4. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B 49, 1–14 (2004)

    Article  CAS  Google Scholar 

  5. F. Fenglian, L. Xie, B. Tang, Q. Wang, S. Jiang, Application of a novel strategy-advanced fenton-chemical precipitation to the treatment of strong stability chelated heavy metal containing wastewater. Chem. Eng. J. 189, 283–287 (2012)

    Google Scholar 

  6. O. Türgay, G. Ersöz, S. Atalay, J. Forss, U. Welander, The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation. Sep. Purif. Technol. 79, 26–33 (2011)

    Article  Google Scholar 

  7. N.Y. Hau, A. Iwase, A. Kudo, R. Amal, Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J. Phys. Chem. Lett. 1, 2607–2612 (2010)

    Article  Google Scholar 

  8. B. Nasernejad, T. Esslam Zadeh, B. Bonakdar Pour, M. Esmaail Bygi, A. Zamani, Camparison for biosorption modeling of heavy metals (Cr (III), Cu (II), Zn (II)) adsorption from wastewater by carrot residues. Process Biochem. 40, 1319–1322 (2005)

    Article  CAS  Google Scholar 

  9. S. Chakrabarti, B.K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater. 112, 269–278 (2004)

    Article  CAS  Google Scholar 

  10. L. Marincic, F.B. Leitz, Electro-oxidation of ammonia in waste water. J. Appl. Electrochem. 8, 333–345 (1978)

    Article  CAS  Google Scholar 

  11. H. Kazuhito, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44, 8269 (2005)

    Article  Google Scholar 

  12. K. Jungwon, C.W. Lee, W. Choi, Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light. Environ. Sci. Technol. 44(17), 6849–6854 (2010)

    Article  Google Scholar 

  13. D. Navaneethan, K. Kandiah, R. Rajendran, S. Prabhu, R. Ramesh, G. Dhanaraj, Electrochemical and photocatalytic investigation of nickel oxide for energy storage and wastewater treatment. Res. Chem. Intermed. 44, 5653–5667 (2018)

    Article  Google Scholar 

  14. L. Jing, J. Jin, Z. Deng, S.Z. Huang, Z.Y. Hu, L. Wang, C. Wang, Tailoring CuO nanostructures for enhanced photocatalytic property. J. Colloid Interface Sci. 384, 1–9 (2012)

    Article  Google Scholar 

  15. S. Prabhu, S. Megala, S. Harish, M. Navaneethan, P. Maadeswaran, S. Sohila, R. Ramesh, Enhanced photocatalytic activities of ZnO dumbbell/reduced graphene oxide nanocomposites for degradation of organic pollutants via efficient charge separation pathway. Appl. Surf. Sci. 487, 1279–1288 (2019)

    Article  CAS  Google Scholar 

  16. Z. Yongqing, S. Zhang, H. Pang, Preparation, characterization and photocatalytic activity of CeO2 nanocrystalline using ammonium bicarbonate as precipitant. Mater. Lett. 1, 1863–1866 (2007)

    Google Scholar 

  17. V. Jorge, P. Reyes, G. Pecchi, Catalytic and photocatalytic ozonation of phenol on MnO2 supported catalysts. Catal. Today 76, 121–131 (2002)

    Article  Google Scholar 

  18. M. Swarup Kumar, N. Mukherjee, A. Mondal, B. Adhikary, Synthesis, characterization and photocatalytic activity of α-Fe2O3 nanoparticles. Polyhedron 33, 145–149 (2012)

    Article  Google Scholar 

  19. K. Surabhi Siva, P. Venkateswarlu, V. Ranga Rao, G. Nageswara Rao, Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int. Nano Lett. 3, 30 (2013)

    Article  Google Scholar 

  20. Di. Li, H. Haneda, Morphologies of zinc oxide particles and their effects on photocatalysis. Chemosphere 51, 129–137 (2003)

    Article  CAS  Google Scholar 

  21. H. Takashi, K. Takanabe, K. Domen, Photocatalytic water-splitting reaction from catalytic and kinetic perspectives. Catal. Lett. 145, 95–108 (2015)

    Article  Google Scholar 

  22. Z. Kan, F.J. Zhang, M.L. Chen, W.C. Oh, Comparison of catalytic activities for photocatalytic and sonocatalytic degradation of methylene blue in present of anatase TiO2-CNT catalysts. Ultrason. Sonochem. 18, 765–772 (2011)

    Article  Google Scholar 

  23. A.I.A. Sherlala, A.A.A. Raman, M.M. Bello, A. Asghar, A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere 193, 1004–1017 (2018)

    Article  CAS  Google Scholar 

  24. L. Chunquan, Z. Sun, L. Liu, W. Huang, S. Zheng, Facile synthesis and enhanced visible-light photoactivity of a g-C3N4/mullite composite. RSC Adv. 6, 91002–91011 (2016)

    Article  Google Scholar 

  25. P.S. Kumar, K. Venkatesh, E.L. Gui, S. Jayaraman, G. Singh, G. Arthanareeswaran, Electrospun carbon nanofibers/TiO2-PAN hybrid membranes for effective removal of metal ions and cationic dye. Environ. Nanotechnol. Monit. Manage. 10, 366–376 (2018)

    Google Scholar 

  26. W. Qingrong, X. Lei, F. Pan, D. Xia, Y. Shang, W. Sun, W. Liu, A new type of activated carbon fibre supported titanate nanotubes for high-capacity adsorption and degradation of methylene blue. Colloids Surf. A 555, 605–614 (2018)

    Article  Google Scholar 

  27. P. Sunita, T.K. Rout, A.D. Prusty, P.M. Ajayan, S. Nayak, Electron transfer directed antibacterial properties of graphene oxide on metals. Adv. Mater. 30, 1702149 (2018)

    Article  Google Scholar 

  28. K.S. Ranjith, P. Manivel, R.T. Rajendrakumar, T. Uyar, Multifunctional ZnO nanorod-reduced graphene oxide hybrids nanocomposites for effective water remediation: effective sunlight driven degradation of organic dyes and rapid heavy metal adsorption. Chem. Eng. J. 325, 588–600 (2017)

    Article  CAS  Google Scholar 

  29. X. Shaohua, L. Fu, T.S. Hiep Pham, A. Yu, F. Han, L. Chen, Preparation of ZnO flower/reduced graphene oxide composite with enhanced photocatalytic performance under sunlight. Ceram. Int. 41, 4007–4013 (2015)

    Article  Google Scholar 

  30. L. Baojun, H. Cao, ZnO@ graphene composite with enhanced performance for the removal of dye from water. J. Mater. Chem. 21, 3346–3349 (2011)

    Article  Google Scholar 

  31. S. Prabhu, M. Pudukudy, S. Sohila, S. Harish, M. Navaneethan, D. Navaneethan, R. Ramesh, Y. Hayakawa, Synthesis, structural and optical properties of ZnO spindle/reduced graphene oxide composites with enhanced photocatalytic activity under visible light irradiation. Opt. Mater. 79, 186–195 (2018)

    Article  CAS  Google Scholar 

  32. L.S. Ying, W. Shen, Z. Gao, Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362–381 (2015)

    Article  Google Scholar 

  33. Z. Xin, J. Pan, C. Zhu, Y. Sheng, Z. Yan, Y. Wang, B. Feng, The visible light catalytic properties of carbon quantum dots/ZnO nanoflowers composites. J. Mater. Sci.: Mater. Electron. 26, 2861–2866 (2015)

    Google Scholar 

  34. H. Bozetine, Q. Wang, A. Barras, M. Li, T. Hadjersi, S. Szunerits, R. Boukherroub, Green chemistry approach for the synthesis of ZnO–carbon dots nanocomposites with good photocatalytic properties under visible light. J. Colloid Interface Sci. 465, 286–294 (2016)

    Article  CAS  Google Scholar 

  35. Y. Li, B.P. Zhang, J.X. Zhao, Z.H. Ge, X.K. Zhao, L. Zou, ZnO/carbon quantum dots heterostructure with enhanced photocatalytic properties. Appl. Surf. Sci. 279, 367–373 (2013)

    Article  CAS  Google Scholar 

  36. J. Xu, Y. Cui, Y. Han, M. Hao, X. Zhang, ZnO–graphene composites with high photocatalytic activities under visible light. RSC Adv. 6, 96778 (2016)

    Article  CAS  Google Scholar 

  37. Y. Wang, R. Shi, J. Lin, Y. Zhu, Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ. Sci. 4, 2922 (2011)

    Article  CAS  Google Scholar 

  38. T. Lv, L. Pan, X. Liu, T. Lu, G. Zhu, Z. Sun, Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction. J. Alloys Compd. 509, 10086–10091 (2011)

    Article  CAS  Google Scholar 

  39. X. Chen, X. Jing, J. Wang, J. Liu, D. Song, L. Liu, Fabrication of spindle-like ZnO architectures for highly sensitive gas sensors. Superlattices Microstruct. 63, 204–214 (2013)

    Article  CAS  Google Scholar 

  40. P. Scherrer, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse. 26, 98–100 (1918)

    Google Scholar 

  41. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater. Charact. 85, 111 (2013)

    Article  CAS  Google Scholar 

  42. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102 (1978)

    Article  CAS  Google Scholar 

  43. B. Weng, M.Q. Yang, N. Zhangab, Y.J. Xu, Toward the enhanced photoactivity and photostability of ZnO nanospheres via intimate surface coating with reduced graphene oxide. J. Mater. Chem. A 2, 9380 (2014)

    Article  CAS  Google Scholar 

  44. K.B. Babitha, J. Jani Matilda, A. Peer Mohamed, S. Ananthakumar, Catalytically engineered reduced graphene oxide/ZnO hybrid nanocomposites for the adsorption, photoactivity and selective oil pick-up from aqueous media. RSC Adv. 5, 50223–50233 (2015)

    Article  CAS  Google Scholar 

  45. S. Dong, Y. Li, J. Sun, C. Yu, Y. Li, J. Sun, Facile synthesis of novel ZnO/RGO hybrid nanocomposites with enhanced catalytic performance for visible-light-driven photodegradation of metronidazole. Mater. Chem. Phys. 145, 357–365 (2014)

    Article  CAS  Google Scholar 

  46. B. Su, Y. Dong, Z. Jin, Q. Wang, Z. Lei, ZnO microspheres-reduced graphene oxide nanocomposite for photocatalytic degradation of methylene blue dye. Appl. Surf. Sci. 392, 196–203 (2017)

    Article  Google Scholar 

  47. Y. Hang, H. Zhang, H. Huang, Y. Liu, H. Li, H. Ming, Z. Kang, ZnO/carbon quantum dots nanocomposites: one-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature. New J. Chem. 36, 1031–1035 (2012)

    Article  Google Scholar 

  48. V. Raja Sekhar, P. Sahatiya, S. Badhulika, Fabrication of a flexible UV photodetector and disposable photoresponsive uric acid sensor by direct writing of ZnO pencil on paper. J. Mater. Chem. C 5, 10231–10240 (2017)

    Article  Google Scholar 

  49. X. Shaohua, L. Fu, T.S.H. Pham, A. Yu, F. Han, L. Chen, Preparation of ZnO flower/reduced graphene oxide composite with enhanced photocatalytic performance under sunlight. Ceram. Int. 41, 4007–4013 (2015)

    Article  Google Scholar 

  50. H. Peng, G. Yuan, T. Wei, J. Li, M.N.R. Ashfold, Introducing carbon dots to moderate the blue emission from zinc vanadium oxide hydroxide hydrate nanoplates. RSC Adv. 8, 20686–20691 (2018)

    Article  Google Scholar 

  51. A. Majid, A. Shuhaimi, R. Yousefi, M. Sookhakian, Effects of graphene oxide concentration on optical properties of ZnO/RGO nanocomposites and their application to photocurrent generation. J. Appl. Phys. 116, 084307 (2014)

    Article  Google Scholar 

  52. F. Li, G. Lai, H. Zhang, A. Yu, One-pot synthesis of multipod ZnO-carbon nanotube-reduced graphene oxide composites with high performance in photocatalysis. J. Nanosci. Nanotechnol. 15, 4325–4331 (2015)

    Article  Google Scholar 

  53. Y. Weilai, D. Xu, T. Peng, Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism. J. Mater. Chem. A 3, 19936–19947 (2015)

    Article  Google Scholar 

  54. Q. Jiaqian, X. Zhang, C. Yang, M. Cao, M. Ma, R. Liu, ZnO microspheres-reduced graphene oxide nanocomposite for photocatalytic degradation of methylene blue dye. Appl. Surf. Sci. 392, 196–203 (2017)

    Article  Google Scholar 

  55. Y. Dongguang, L. Zhang, B. Liu, M. Wu, Preparation and characterization of ZnO-graphene composite photocatalyst. J. Nanosci. Nanotechnol. 12, 937–942 (2012)

    Article  Google Scholar 

  56. Y. Wang, F. Wang, J. He, Controlled fabrication and photocatalytic properties of a three-dimensional ZnO nanowire/reduced graphene oxide/CdS heterostructure on carbon cloth. Nanoscale 5, 11291 (2013)

    Article  CAS  Google Scholar 

  57. K. Wang, X. Jimeng, W. Xitao, The effects of ZnO morphology on photocatalytic efficiency of ZnO/RGO nanocomposites. Appl. Surf. Sci. 360, 270–275 (2016)

    Article  Google Scholar 

  58. S. Mohsin, N.M. Khan, M. Saeed, Photocatalytic activity of bismuth ferrite nanoparticles synthesized via sol-gel route. Z. Phys. Chem. 233, 595–607 (2019)

    Article  Google Scholar 

  59. A.F. Alkaim, A.M. Aljeboree, N.A. Alrazaq, S.J. Baqir, F.H. Hussein, A.J. Lilo, Effect of pH on adsorption and photocatalytic degradation efficiency of different catalysts on removal of methylene blue. Asian J. Chem. 26, 8445 (2014)

    Article  Google Scholar 

  60. C. Sampa, B.K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater. 112, 269–278 (2004)

    Article  Google Scholar 

  61. E.S. Baeissa, Photocatalytic degradation of methylene blue dye under visible light irradiation using In/ZnO nanocomposite. Front Nanosci. Nanotechnol. 2, 1–5 (2016)

    Article  Google Scholar 

  62. U.I. Gaya, A.H. Abdullah, Z. Zainal, M.Z. Hussein, Photocatalytic treatment of 4- chlorophenol in aqueous ZnO suspensions: intermediates, influence of dosage and inorganic anions. J. Hazard. Mater. 168, 57–63 (2009)

    Article  CAS  Google Scholar 

  63. Y. Peng, J. Ji, D. Chen, Ultrasound assisted synthesis of ZnO/reduced graphene oxide composites with enhanced photocatalytic activity and anti-photocorrosion. Appl. Surf. Sci. 356, 762–768 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by DST-SERB, India (File No. EMR/2017/001238) and The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this study through the Small Research Group Project under Grant Number R.G.P. 1/306/1442.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Ramu or R. Ramesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3812 kb)

Supplementary file2 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elumalai, N., Prabhu, S., Selvaraj, M. et al. Investigation on synergistic effect of rGO and carbon quantum dots-embedded ZnO hollow spheres for improved photocatalytic aqueous pollutant removal process. J Mater Sci: Mater Electron 32, 28633–28647 (2021). https://doi.org/10.1007/s10854-021-07239-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07239-w

Navigation