Skip to main content
Log in

Amidoxime modification of polyacrylonitrile/Pterocladia capillacea-derived activated carbon composite for adsorption of toxic chromium from aquatic environment

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

By polymerizing acrylonitrile in the presence of ammonium persulfate as an initiator and Pterocladia capillacea-activated carbon (P-AC) as a filler, a composite material polyacrylonitrile/Pterocladia capillacea-activated carbon (PAN/P- AC) was developed. By reacting hydroxylamine with the composite's nitrile groups, the prepared composite was functionalized by amidoximation. FTIR spectrometry, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Brunauer–Emmett–Teller (BET) analysis were all applied to thoroughly characterize the fabricated adsorbent. For the treatment of Cr(VI) ions from synthetic solutions, the adsorption properties of amidoximated polyacrylonitrile/Pterocladia capillacea-activated carbon (PAO/P-AC) were investigated. The pH effect, uptake kinetics, adsorption isotherms, and thermodynamics studies were used to characterize adsorption properties. As a kinetic model analysis, the data confirmed that the pseudo-second-order rate equation matched well the adsorption process. With coefficients of determination (R2) of 0.9998, the Tempkin isotherm model had the lowest error, suggesting that it is the best fitted model to describe this adsorption mechanism. Thermodynamic parameters demonstrated that Cr(VI) adsorption was endothermic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Scheme 1

Similar content being viewed by others

References

  1. El Nemr A (ed) (2011) Impact monitoring and management of environmental pollution. Nova Science Publishers, Inc., Hauppauge New York, p 638 (ISBN-10: 1608764877, ISBN-13: 9781608764877)

    Google Scholar 

  2. El Nemr A (ed) (2012) Environmental pollution and its relation to climate change. Nova Science Publishers Inc., Hauppauge New York, p 694 (ISBN-13: 978-1-61761-794-2)

    Google Scholar 

  3. Khaled A, El Nemr A, El Sikaily A (2013) Heavy metals concentrations in biota of the Mediterranean Sea: a review, part I. Blue Biotechnol J 2(1):79–133

    Google Scholar 

  4. Khaled A, El Nemr A, El Sikaily A (2013) Heavy metals concentrations in biota of the Mediterranean Sea: a review, part II. Blue Biotechnol J 2(2):191–249

    Google Scholar 

  5. Hassaan MA, El Nemr A, Madkour FF (2016) Environmental assessment of heavy metal pollution and human health risk. Am J Water Sci Eng 2(3):14–19. https://doi.org/10.11648/j.ajwse.20160203.11

    Article  Google Scholar 

  6. El Nemr A, El-Said GF, Khaled A, Ragab S (2016) Distribution and ecological risk assessment of some heavy metals in coastal surface sediments along the Red Sea. Egypt Intern J Sediment Res 31(2):64–172. https://doi.org/10.1016/j.ijsrc.2014.10.001

    Article  Google Scholar 

  7. El Nemr A, El-Said GF, Ragab S, Khaled A, El-Sikaily A (2016) The distribution, contamination and risk assessment of heavy metals in sediment and shellfish from the Red Sea coast. Egypt Chemosphere 165:369–380

    Article  Google Scholar 

  8. El Nemr A, El-Said GF (2017) Assessment and ecological risk of heavy metals in sediment and molluscs from the Mediterranean coast. Water Environ Res 89:195–210

    Article  Google Scholar 

  9. Idris AM, Said TO, Brima EI, Sahlabji T, Alghamdi MM, El-Zahhar AA, Arshad M, El Nemr A (2019) Assessment of contents of selected heavy metals in street dust from Khamees-Mushait city, Saudi Arabia, using multivariate statistical analysis, GIS mapping, geochemical indices and health risk. Fresenius Environ Bull 28(8):6059–6069

    CAS  Google Scholar 

  10. El-Sikaily A, El Nemr A, Khaled A, Abdelwehab O (2007) Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon. J Hazard Mater 148:216–228

    Article  CAS  Google Scholar 

  11. Kowalski Z (1994) Treatment of chromic tannery wastes. J Hazard Mater 37:137–144

    Article  CAS  Google Scholar 

  12. Eleryan A, El Nemr A, Mashaly M, Khaled A (2019) 6-Triethylenetetramine 6-deoxycellulose grafted with crotonaldehyde as adsorbent for Cr6+ removal from wastewater. Inter J Sci Eng Res 10(7):1199–1211

    Google Scholar 

  13. Gode F, Pehlivan E (2005) Removal of Cr(VI) from aqueous solution by two Lewatit-anion exchange resins. J Hazard Mater 119(1–3):175–182

    Article  CAS  Google Scholar 

  14. El Nemr A (2007) Pomegranate husk as an adsorbent in the removal of toxic chromium from wastewater. Chem Ecol 23(5):409–425

    Article  Google Scholar 

  15. El Nemr A (2009) Potential of pomegranate husk carbon for Cr(VI) removal from wastewater: kinetic and isotherm studies. J Hazard Mater 161:132–141

    Article  Google Scholar 

  16. EPA (1976) USEPA Report no. EPA/570/9–76/003; Washington, DC.

  17. Patterson RR, Fendorf S, Fendorf M (1997) Reduction of hexavalent chromium by amorpous iron sulfide. Environ Sci Technol 31(7):2039–2044

    Article  CAS  Google Scholar 

  18. Ismail MNM, El Nemr A, El Ashry ESH, Abdel Hamid H (2020) Novel simple modification of chitosan as adsorptive agent for removal of Cr6+ from aqueous solution. Egypt J Chem 63(4):1219–1240. https://doi.org/10.21608/ejchem.2019.11157.1716

    Article  Google Scholar 

  19. Eldeeb TM, El Nemr A, Khedr MH, El-Dek SI, Imam NG (2020) Novel three-dimensional chitosan-carbon nanotube–PVA nanocomposite hydrogel for removal of Cr6+ from wastewater. Desalin Water Treat 184:163–177. https://doi.org/10.5004/dwt.2020.25366

    Article  CAS  Google Scholar 

  20. Eleryan A, El Nemr A, Idris AM, Alghamdi MdM, El-Zahhar AA, Said TO, Sahlabji T (2020) Feasible and eco-friendly removal of hexavalent chromium toxicant from aqueous solutions using chemically modified sugarcane bagasse cellulose. Toxin Rev. https://doi.org/10.1080/15569543.2020.1790606

    Article  Google Scholar 

  21. El Nemr A (ed) (2012) Non-conventional textile waste water treatment. Nova Science Publishers, Inc., Hauppauge New York, p 267 (Hard cover ISBN: 978-1-62100-079-2, e-book ISBN: 978-1-62100-228-4)

    Google Scholar 

  22. El Nemr A, Hassaan MA, Madkour FF, Idris AM, Said TO, Sahlabji T, Alghamdi MM, El-Zahhar AA (2019) Advanced oxidation of AY-11 dye effluent: detoxification and degradation mechanism. Toxin Rev. https://doi.org/10.1080/15569543.2020.1736098

    Article  Google Scholar 

  23. El-Nemr MA, Ismail IMA, Abdelmonem NM, El Nemr A, Ragab S (2020) Amination of biochar derived from watermelon peel by triethylenetetramine and ammonium hydroxide for toxic chromium removal enhancement. CJCE. https://doi.org/10.1016/j.cjche.2020.08.020

    Article  Google Scholar 

  24. El Nemr A, Aboughaly RM, El Sikaily A, Ragab S, Masoud MS, Ramadan MS (2020) Microporous nano activated carbon type I derived from orange peel and its application for Cr(VI) removal from aquatic environment. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-00995-5

    Article  Google Scholar 

  25. Deng S, Zhang G, Li Y, Dou Y, Wang P (2016) Facile preparation of amidoxime-functionalized fiber by microwave-assisted method for the enhanced adsorption of chromium(VI) from aqueous solution. RSC Adv 6:64665–64675

    Article  CAS  Google Scholar 

  26. Serag E, El Nemr A, Hamid FFA, Fathy SA, El-Maghraby A (2018) A novel three dimensional Carbon Nanotube-polyethylene glycol-polyvinyl alcohol Nanocomposite for Cu(II) removal from water. Egypt J Aquat Biol Fisher 22(2):103–118

    Article  Google Scholar 

  27. Hosain ANA, El Nemr A, El Sikaily A, Mahmoud ME, Amira MF (2020) Surface modifications of nanochitosan coated magnetic nanoparticles and their applications in Pb(II), Cu(II) and Cd(II) removal. J Environ Chem Eng 8(5):104316. https://doi.org/10.1016/j.jece.2020.104316

    Article  CAS  Google Scholar 

  28. El-Nemr MA, Ismail IMA, Abdelmonem NM, Ragab S, El Nemr A (2020) Ozone and ammonium hydroxide modification of biochar prepared from Pisum sativum peels improves the adsorption of copper (II) from an aqueous medium. Environ Process 7:973–1007. https://doi.org/10.1007/s40710-020-00455-2

    Article  CAS  Google Scholar 

  29. Ismael MNM, El Nemr A, El Ashry ESH, Abdel Hamid H (2020) Removal of Hexavalent chromium by cross-linking chitosan and N N’-methylene bis-acrylamide. Environ Process 7:911–930. https://doi.org/10.1007/s40710-020-00447-2

    Article  CAS  Google Scholar 

  30. Boix G, Troyano J, Garzón-Tovar L, Camur C, Bermejo N, Yazdi A, Piella J, Bastus NG, Puntes VF, Imaz I, Maspoch D (2020) MOF-Beads containing inorganic nanoparticles for the simultaneous removal of multiple heavy metals from water. ACS Appl Mater Interfaces 12(9):10554–10562

    Article  CAS  Google Scholar 

  31. Tu B, Wen R, Wang K, Cheng Y, Deng Y, Cao W, Zhang K, Taoab H (2020) Efficient removal of aqueous hexavalent chromium by activated carbon derived from Bermuda grass. J Colloid Interface Sci 560:649–658

    Article  CAS  Google Scholar 

  32. Yu S, Yuan G, Gao H, Liao Y (2020) Removal of Cr(VI) from aqueous solutions using polymer nanotubes. J Mater Sci 55:163–176

    Article  CAS  Google Scholar 

  33. Abdelwahab O, El Sikaily A, Khaled A, El Nemr A (2007) Mass transfer processes of Chromium (VI) adsorption onto Guava seeds. Chem Ecol 23(1):73–85

    Article  CAS  Google Scholar 

  34. El Sikaily A, El Nemr A, Khaled A (2011) Copper sorption onto dried red alga Pterocladia capillacea and its activated carbon. Chem Eng J 168:707–714

    Article  Google Scholar 

  35. El Nemr A, El Sikaily A, Khaled A, Abdelwahab O (2015) Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon. Arab J Chem 8:105–117. https://doi.org/10.1016/j.arabjc.2011.01.016

    Article  CAS  Google Scholar 

  36. Aboli E, Jafari D, Esmaeili H (2020) Heavy metal ions (lead, cobalt, and nickel) biosorption from aqueous solution onto activated carbon prepared from Citrus limetta leaves. Carbon Lett 30:683–698. https://doi.org/10.1007/s42823-020-00141-1

    Article  Google Scholar 

  37. Alimohammady M, Jahangiri M, Kiani F, Tahermansouri H (2020) Preparation and characterization of functionalized MWCNTs/COOH with 3-amino-5-phenylpyrazole as an adsorbent and optimization study using central composite design. Carbon Lett 29:1–20. https://doi.org/10.1007/s42823-019-00001-7

    Article  Google Scholar 

  38. Kumar M, Tamilarasan R (2013) Modeling studies: adsorption of aniline blue by using Prosopis Juliflora carbon/Ca/alginate polymer composite beads. Carbohydr Polym 92(2):2171–2180

    Article  CAS  Google Scholar 

  39. Kumar M, Tamilarasan R, Sivakumar V (2013) Adsorption of Victoria blue by carbon/Ba/alginate beads: kinetics, thermodynamics and isotherm studies. Carbohydr Polym 98(1):505–513

    Article  CAS  Google Scholar 

  40. El-Bindary AA, Diab MA, Hussien MA, El-Sonbati AZ, Eessa AM (2014) Adsorption of Acid Red 57 from aqueous solutions onto polyacrylonitrile/activated carbon composite. Spectrochim Acta Part A Mol Biomol Spectrosc 124:70–77

    Article  CAS  Google Scholar 

  41. El-Bindary AA, Hussien MA, Diab MA, Eessa AM (2014) Adsorption of Acid Yellow 99 by polyacrylonitrile/activated carbon composite: kinetics, thermodynamics and isotherm studies. J Mol Liq 197:236–242

    Article  CAS  Google Scholar 

  42. Shoaib AGM, El Sikaily A, El Nemr A, Mohamed AEDA (2020) Hassan AA (2020) Testing the carbonization condition for high surface area preparation of activated carbon followed Type IV from green alga Ulva lactuca. Biomass Convers Biorefinery 11:06. https://doi.org/10.1007/s13399-020-00823-w

    Article  CAS  Google Scholar 

  43. Shoaib AGM, El Sikaily A, El Nemr A, Mohamed AEDA, Hassan AA (2020) Preparation and characterization of highly surface area activated carbons followed Type IV from marine red alga (Pterocladia capillacea) by zinc chloride activation. Biomass Convers Biorefinery 04(05):2020b. https://doi.org/10.1007/s13399-020-00760-8

    Article  CAS  Google Scholar 

  44. George SC (2015) Production of activated carbon from natural sources. Arch Med Vet 1(1):7

    Google Scholar 

  45. El Nemr A, Aboughaly RM, El Sikaily A, Ragab S, Masoud MS, Ramadan MS (2021) Utilization of Citrus aurantium peels for sustainable production of high surface area type I microporous nano activated carbons. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01457-2

    Article  Google Scholar 

  46. El Nemr A, Aboughaly RM, El Sikaily A, Ragab S, Masoud MS, Ramadan MS (2021) Utilization of sugarcane bagasse/ZnCl2 for sustainable production of microporous nano-activated carbons of type I for toxic Cr (VI) removal from aqueous environment. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01445-6

    Article  Google Scholar 

  47. Sayğılı H, Güzel F (2016) High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation: process optimization, characterization and dyes adsorption. J Clean Prod 113:995–1004

    Article  Google Scholar 

  48. Li Y, Li Y, Zang H, Chen L, Meng Z, Li H, Ci L, Du Q, Wang D, Wang C, Li H (2020) ZnCl2-activated carbon from soybean dregs as a high efficiency adsorbent for cationic dye removal: isotherm, kinetic, and thermodynamic studies. Environ Technol 41(15):2013–2023

    Article  CAS  Google Scholar 

  49. Elwakeel KZ, El-Bindary AA, Kouta EY, Guibal E (2018) Functionalization of polyacrylonitrile/Na-Y-zeolite composite with amidoxime groups for the sorption of Cu(II), Cd(II) and Pb(II) metal ions. Chem Eng J 332:727–736

    Article  CAS  Google Scholar 

  50. Liu X, Chen H, Wang C, Qu R, Ji C, Sun C, Zhang Y (2010) Synthesis of porous acrylonitrile/methyl acrylate copolymer beads by suspendedemulsion polymerization and their adsorption properties after amidoximation. J Hazard Mater 175:1014–1021

    Article  CAS  Google Scholar 

  51. Horzum N, Shahwan T, Parlak O, Demir MM (2012) Synthesis of amidoximated polyacrylonitrile fibers and its application for sorption of aqueous uranyl ions under continuous flow. Chem Eng J 213:41–49

    Article  CAS  Google Scholar 

  52. Akl ZF, El-Saeed SM, Atta AM (2016) In-situ synthesis of magnetite acrylamide aminoamidoxime nanocomposite adsorbent for highly efficient sorption of U(VI) ions. J Ind Eng Chem 34:105–116

    Article  CAS  Google Scholar 

  53. Mahdavinia GR, Shokri E (2017) Synthesis and characterization of magnetic amidoximated chitosan-g poly (polyacrylonitrile)/laponite RD nanocomposites with enhanced adsorption capacity for Cu2+. Turk J Chem 41:135–152

    Article  CAS  Google Scholar 

  54. El Nemr A, Eleryan A, Mashaly M, Khaled A (2020) Rapid synthesis of cellulose propionate and its conversion to cellulose nitrate propionate. Polym Bull. https://doi.org/10.1007/s00289-020-03317-x

    Article  Google Scholar 

  55. Bouchoum H, Benmoussa D, Jada A, Tahiri M, Cherkaoui O (2019) Synthesis of amidoximated polyacrylonitrile fibers and its use as adsorbent for Cr (VI) ions removal from aqueous solutions. Environ Prog Sustain Energy. https://doi.org/10.1002/ep.13196

    Article  Google Scholar 

  56. Anirudhan TS, Ramachandran M (2008) Synthesis and characterization of amidoximated polyacrylonitrile/organobentonite composite for Cu (II), Zn (II), and Cd (II) adsorption from aqueous solutions and industry wastewaters. Ind Eng Chem Res 47(16):6175–6184

    Article  CAS  Google Scholar 

  57. Ji C, Qu R, Chen H, Liu X, Sun C, Ma C (2016) Hg (II) adsorption using amidoximated porous acrylonitrile/itaconic copolymers prepared by suspended emulsion polymerization. Water Sci Technol 73(7):1709–1718

    Article  CAS  Google Scholar 

  58. Ozdemir I, Şahin M, Orhan R, Erdem M (2014) Preparation and characterization of activated carbon from grape stalk by zinc chloride activation. Fuel Process Technol 125:200–206

    Article  CAS  Google Scholar 

  59. El Nemr A, Aboughaly RM, El Sikaily A, Ragab S, Masoud MS, Ramadan MS (2020) Microporous nano-activated carbon type I derived from orange peel and its application for Cr (VI) removal from aquatic environment. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-00995-5

    Article  Google Scholar 

  60. El Nemr A, El-Sikaily A, Khaled A (2010) Modeling of adsorption isotherms of Methylene Blue onto rice husk activated carbon. Egypt J Aquat Res 36(3):403–425

    Google Scholar 

  61. El Nemr A, Ragab S, El Sikaily A (2017) Rapid synthesis of cellulose triacetate from cotton cellulose and its effect on specific surface area and particle size distribution. Iran Polym J 26(4):261–272. https://doi.org/10.1007/s13726-017-0516-2

    Article  CAS  Google Scholar 

  62. Ragab S, El Nemr A (2018) Nanofiber cellulose di- and tri-acetate using ferric chloride as a catalyst promoting highly efficient synthesis under microwave irradiation. J Macromol Sci Part A Pure Appl Chem 55(2):124–134. https://doi.org/10.1080/10601325.2017.1387741

    Article  CAS  Google Scholar 

  63. El Nemr A, Ragab S (2018) Acetylation of COTTON-Giza 86 cellulose using MnCl2 as a new catalyst and its application to machine oil removal. Environ Process 5(4):895–905. https://doi.org/10.1007/s40710-018-0330-7

    Article  Google Scholar 

  64. Ragab S, El Nemr A (2019) Zirconyl chloride as a novel and efficient green Lewis acid catalyst for direct acetylation of cotton cellulose in the presence and absence of solvent. J Polym Res 26:156. https://doi.org/10.1007/s10965-019-1816

    Article  Google Scholar 

  65. Oliveira LCA, Pereira E, Guimaraes IR, Vallone A, Pereirac M, Mesquita JP, Sapag K (2009) Preparation of activated carbons from coffee husks utilizing FeCl3and ZnCl2 as activating agents. J Hazard Mater 165:87–94

    Article  CAS  Google Scholar 

  66. Kılıç M, Apaydın-Varol E, Pütün AE (2012) Preparation and surface characterization of activated carbons from Euphorbia rigida by chemical activation with ZnCl2, K2CO3, NaOH and H3PO4. Appl Surf Sci 261:247–254

    Article  Google Scholar 

  67. Helmy ET, El Nemr A, Mousa M, Arafa E, Eldafrawy S (2018) Photocatalytic degradation of organic dyes pollutants in the industrial textile wastewater by using synthesized TiO2, C-doped TiO2, S-doped TiO2 and C, S co-doped TiO2 nanoparticles. J Water Environ Nanotechnol 3(2):116–127

    CAS  Google Scholar 

  68. Yang T, Wang L, Liang M, Chen Y, Zou H (2018) Cross-linked polyvinyl amidoxime fiber: a highly selective and recyclable adsorbent of gallium from Bayer liquor. Iran Polym J 27:589–597. https://doi.org/10.1007/s13726-018-0635-4

    Article  CAS  Google Scholar 

  69. Zahri NAM, Jamil SNAMD, Abdullah LC, Yaw TCS, Mobarekeh MN, Huey SJ, Rapeia NSM (2015) Improved method for preparation of amidoxime modified poly(acrylonitrile-co-acrylic acid): characterizations and adsorption case study. Polymers 7:1205–1220. https://doi.org/10.3390/polym7071205

    Article  CAS  Google Scholar 

  70. Duffy NV (1972) Interpretation of infrared spectra. J Chem Educ 49:30–45

    Article  Google Scholar 

  71. Lu S, Chen L, Hamza MF, He C, Wang X, Wei Y, Guibal E (2019) Amidoxime Functionalization of a poly(acrylonitrile)/silica composite for the sorption of Ga(III): application to the treatment of Bayer liquor. Chem Eng J 368:459–473

    Article  CAS  Google Scholar 

  72. Alghamdi MM, El-Zahhar AA, Idris AM, Sadi TO, Sahlabji T, El Nemr A (2019) Synthesis, characterization, and application of a novel polymeric-bentonite-magnetite composite resin for water softening. Sep Purif Technol 224:356–365

    Article  CAS  Google Scholar 

  73. Elhebshi A, El Nemr A, El-Deab MS, Ashour I (2019) CBG-HCl as a green corrosion inhibitor for low carbon steel in 0.5M H2SO4 with and without 0.1M NaCl. Desalin Water Treat 164:240–248. https://doi.org/10.5004/dwt.2019.24446

    Article  CAS  Google Scholar 

  74. Selvi P, Ramasami M, Samuel MHP, Adaikkalam P, Srinivasan GN (2004) Recovery of gallium from Bayer liquor using chelating resins in fixed-bed columns. Ind Eng Chem Res 43:2216–2221

    Article  CAS  Google Scholar 

  75. Chen J, Qu R, Zhang Y, Sun C, Wang C, Ji C, Yin P, Chen H, Niu Y (2012) Preparation of silica gel supported amidoxime adsorbents for selective adsorption of Hg(II) from aqueous solution. Chem Eng J 209:235–244

    Article  CAS  Google Scholar 

  76. Wang J, Zhao L, Duan W, Han L, Chen Y (2012) Adsorption of aqueous Cr(VI) by novel fibrous adsorbent with amino and quaternary ammonium groups. Ind Eng Chem Res 51:13655–13662

    Article  CAS  Google Scholar 

  77. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid interface with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  78. El-Nemr MA, Abdelmonem NM, Ismail IMA, Ragab S, El Nemr A (2020) The efficient removal of the hazardous Azo Dye Acid Orange 7 from water using modified biochar from Pea peels. Desalin Water Treat 203:327–355. https://doi.org/10.5004/dwt.2020.26190

    Article  CAS  Google Scholar 

  79. El-Nemr MA, Abdelmonem NM, Ismail IMA, Ragab S, El Nemr A (2020) Removal of Acid Yellow 11 Dye using novel modified biochar derived from Watermelon Peels. Desalin Water Treat 203:403–431. https://doi.org/10.5004/dwt.2020.26207

    Article  CAS  Google Scholar 

  80. Wanga Y, Gua Z, Yang J, Liao J, Yang Y, Liu N, Tang J (2014) Amidoxime-grafted multiwalled carbon nanotubes by plasma techniques for efficient removal of uranium(VI). Appl Surf Sci 320:10–20

    Article  Google Scholar 

  81. Barik S, Behera L, Badamali SK (2017) Assessment of thermal and antimicrobial properties of PAN/Zn-Al layered double hydroxide nanocomposites. Compos Interfaces 24:579–591

    Article  Google Scholar 

  82. Baishya P, Maji TKA (2018) comparative study on the properties of graphene oxide and activated carbon based sustainable wood starch composites. Int J Biol Macromol 115:970–977

    Article  CAS  Google Scholar 

  83. Kalagatur NK, Karthick K, Allen JA, Nirmal Ghosh OS, Chandranayaka S, Gupta VK, Krishna K, Mudili V (2017) Application of activated carbon derived from seed shells of Jatropha curcas for decontamination of zearalenone mycotoxin. Front Pharmacol 8:760

    Article  Google Scholar 

  84. Wu F, Lu Y, Shao G, Zeng F, Wu Q (2012) Preparation of polyacrylonitrile/graphene oxide by in situ polymerization. Polym Int 61(9):1394–1399

    Article  CAS  Google Scholar 

  85. Kalagatur NK, Karthick K, Allen JA, Nirmal Ghosh OS, Chandranayaka S, Gupta VK, Mudili V (2017) Application of activated carbon derived from seed shells of Jatropha curcas for decontamination of zearalenone mycotoxin. Front Pharmacol 8:760

    Article  Google Scholar 

  86. Eldin MM, Elaassar MR, Elzatahry AA, Al-Sabah MMB (2017) Poly (acrylonitrile-co-methyl methacrylate) nanoparticles: I. Preparation and characterization. Arab J Chem 10(8):1153–1166

    Article  Google Scholar 

  87. Mor S, Ravindra K, Bishnoi NR (2007) Adsorption of chromium from aqueous solution by activated alumina and activated charcoal. Bioresour Tech 98:954–957

    Article  CAS  Google Scholar 

  88. Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens, Handlingar 24:1–39

    Google Scholar 

  89. Ho Y, McKay G, Wase D, Forster CF (2000) Study of the sorption of divalent metal ions on to peat. Adsorpt Sci Technol 18:639–650

    Article  CAS  Google Scholar 

  90. Zeldowitsch J (1934) Über den mechanismus der katalytischen oxydation von CO a MnO2. Acta Physicochim URSS 1:449–464

    Google Scholar 

  91. Chien SH, Clayton WR (1980) Application of Elovich equation to the kinetics of phosphate release and sorption on soils. Soil Sci Soc Am J 44:265–268

    Article  CAS  Google Scholar 

  92. Sparks DL (1986) Kinetics of reaction in pure and mixed systems. Soil physical chemistry. CRC Press, Boca Raton, p 1986

    Google Scholar 

  93. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanity Eng Div Am Soc Civil Eng 89:31–59

    Article  Google Scholar 

  94. Srinivasan K, Balasubramanian N, Ramakrishan TV (1988) Studies on chromium removal by rice husk carbon. Ind J Environ Health 30:376–387

    CAS  Google Scholar 

  95. Boyed GE, Adamson AM, Myers LS (1949) The exchange adsorption of ions from aqueous solutions by organic Zeolites. J Am Chem Soc 69(11):2836–2848

    Article  Google Scholar 

  96. Altınışık A, Gür E, Seki Y (2010) A natural sorbent, Luffa cylindrical for the removal of a model basic dye. J Hazard Mater 179(1–3):658–664

    Article  Google Scholar 

  97. Bulut E, Özacar M, Şengil IA (2008) Adsorption of malachite green onto bentonite: equilibrium and kinetic studies and process design. Microporous Mesoporous Mater 115(3):234–246

    Article  CAS  Google Scholar 

  98. Alkan M, Onganer Y, Gan MDO (2000) Adsorption of methylene blue from aqueous solution onto perlite. Water Air Soil Pollut 120:229–248

    Article  Google Scholar 

  99. Crini G, Peindy HN, Gimbert F, Robert C (2007) Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Sep Purif Technol 53:97–110

    Article  CAS  Google Scholar 

  100. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  101. Freundlich H (1906) Über die adsorption in Lösungen. Z Phys Chem 57:385–470

    CAS  Google Scholar 

  102. Chaúque EFC, Dlamini LN, Adelodun AA, Greylingb CJ, Ngila JC (2016) Modification of electrospun polyacrylonitrile nanofibers with EDTA for the removal of Cd and Cr ions from water effluents. Appl Surf Sci 369:19–28

    Article  Google Scholar 

  103. Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies review. J Hazard Mater 162:616–645

    Article  CAS  Google Scholar 

  104. Site AD (2001) Factors affecting sorption of organic compounds in naturalsorbent/water systems and sorption coefficients for selected pollutants: a review. J Phys Chem Ref Data 30(1):187–439

    Article  Google Scholar 

  105. Tempkin MJ, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim URSS 12:217–222

    Google Scholar 

  106. Radushkevich LV (1949) Potential theory of sorption and structure of carbons. Zh Fiz Khim 23:1410–1420

    CAS  Google Scholar 

  107. Dubinin MM (1960) The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface. Chem Rev 60:235–266

    Article  CAS  Google Scholar 

  108. Dubinin MM (1965) Modern state of the theory of volume filling of micropore adsorbents during adsorption of gases and steams on carbon adsorbents. Zh Fiz Khim 39:1305–1317

    CAS  Google Scholar 

  109. Shahwan T, Erten HN (2004) Temperature effects on barium sorption on natural kalinite and chlorite-illite clays. J Radioanal Nucl Chem 260(1):43–48

    Article  CAS  Google Scholar 

  110. Zhao Z, Li X, Chai Y, Hua Z, Xiao Y, Yang Y (2016) Adsorption performances and mechanisms of amidoxime resin toward gallium (III) and vanadium(V) from Bayer liquor. ACS Sustain Chem Eng 4(1):53–59

    Article  CAS  Google Scholar 

  111. Feng B, Shen W, Shi L, Qu S (2018) Adsorption of hexavalent chromium by polyacrylonitrile-based porous carbon from aqueous solution. R Soc Open Sci 5:171662. https://doi.org/10.1098/rsos.171662

    Article  CAS  Google Scholar 

  112. Jiang Z, Liu Y, Zeng G, Xu W, Zheng B, Tan X, Wang S (2015) Adsorption of hexavalent chromium by polyacrylonitrile (PAN)-based activated carbon fibers from aqueous solution. RSC Adv 5:25389–25397

    Article  CAS  Google Scholar 

  113. El-Nemr MA, Ismail IM, Abdelmonem NM, El Nemr A, Ragab S (2020) Amination of biochar surface from watermelon peel for toxic chromium removal enhancement. Chin J Chem Eng. https://doi.org/10.1016/j.cjche.2020.08.020

    Article  Google Scholar 

  114. Masindi V, Foteinis S, Tekere M, Ramakokovhu MM (2021) Facile synthesis of halloysite-bentonite clay/magnesite nanocomposite and its application for the removal of chromium ions: adsorption and precipitation process. Mater Today 38:1088–1101

    CAS  Google Scholar 

  115. Masindi V, Ramakokovhu MM (2021) The performance of thermally activated and vibratory ball milled South African bentonite clay for the removal of chromium ions from aqueous solution. Mater Today 38:964–974

    CAS  Google Scholar 

  116. Rambabu K, Thanigaivelan A, Bharath G, Sivarajasekar N, Banat F, Show PL (2021) Biosorption potential of Phoenix dactylifera coir wastes for toxic hexavalent chromium sequestration. Chemosphere 268:128809

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support from the Science and Technological Development Fund (STDF) of Egypt (Project No. CB-4874 and CB-22816).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed El Nemr.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoaib, A.G.M., El Nemr, A., El Sikaily, A. et al. Amidoxime modification of polyacrylonitrile/Pterocladia capillacea-derived activated carbon composite for adsorption of toxic chromium from aquatic environment. Carbon Lett. 32, 513–535 (2022). https://doi.org/10.1007/s42823-021-00281-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00281-y

Keywords

Navigation