Skip to main content
Log in

Influence of welding process on the properties of dissimilar titanium alloy weldments: a review

  • Review
  • Published:
JMST Advances Aims and scope Submit manuscript

Abstract

The extensive use of titanium alloys in a variety of complex industrial applications may be attributed to their properties of high strength-to-weight ratio, corrosion resistance and high temperature strength. Recently, the use of dissimilar titanium alloys has become popular to achieve contrasting characteristics in a single unit. In the fabrication of the structures, joining methods such as welding hold the key in the attainment of the desired characteristics. The present study is aimed at reviewing various state-of-the-art processes used for welding of dissimilar titanium alloys. In particular, the influence of different welding methods such as gas tungsten arc welding (GTAW), laser and electron beam welding on the microstructure, mechanical properties and other characteristics of dissimilar weldments of α, α + β and β titanium alloys has been emphasized. The underlying phenomena that govern the effect of weld processing parameters on the mechanical strength, microstructure and weld joint quality of the alloys were exploited. Moreover, detailed investigations on the fusion zone porosities and evolution of intermetallic concept at the interfacial regions have been examined. Furthermore, different remedial approaches to enhance the joint quality such as beam offsetting, process hybridization, aging and post-weld heat treatments are investigated thoroughly. The latest trends in dissimilar welding of titanium alloys to upheave further research in this area have been reported in the context of their application in industrial applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Z.L. Lei, Z.J. Dong, Y.B. Chen, L. Huang, R.C. Zhu, Microstructure and mechanical properties of laser welded Ti–22Al–27Nb/TC4 dissimilar alloys. Mater. Sci. Eng. A 559, 909–916 (2013)

    Google Scholar 

  2. D. Banerjee, J.C. Williams, Perspectives on titanium science and technology. Acta Mater. 61(3), 844–879 (2013)

    Google Scholar 

  3. G. Lütjering, J.C. Williams, Titanium (Springer, Berlin, 2007)

    Google Scholar 

  4. Rti, “Titanium alloy guide,” pp. 43–74 (2013).

  5. T. Leguey, R. Sch, P. Marmy, M. Victoria, Microstructure of Ti5Al2. 5Sn and Ti6Al4V deformed in tensile and fatigue tests. J. Nucl. Mater. 305, 52–59 (2002)

    Google Scholar 

  6. R.R. Boyer, An overview on the use of titanium in the aerospace industry. Mater. Sci. Eng. A 213(1–2), 103–114 (1996)

    Google Scholar 

  7. D.R. Askeland, P.P. Phulé, The science and engineering of materials (Springer, Berlin, 2006)

    Google Scholar 

  8. R. Wanhill, S. Barter, Fatigue of beta processed and beta heat-treated titanium alloys, pp. 1–7 (2012)

  9. A. Leyens, M. Peters, Titanium and titanium alloys (Wiley-VCH Verlag GmbH & Co, Weinheim, 2003)

    Google Scholar 

  10. ASM International. Handbook Committee., ASM handbook.

  11. A. Vassel, Microstructural instabilities in beta titanium alloys. in Beta titanium alloys in the 1990’s, (1993)

  12. T. Pasang et al., Comparison of Ti-5Al-5V-5Mo-3Cr welds performed by laser beam, electron beam and gas tungsten arc welding. Proc. Eng. 63, 397–404 (2013)

    Google Scholar 

  13. E.O. Ezugwu, Z.M. Wang, Titanium alloys and their machinability. J. Mater. Process. Technol. 68(3), 262–274 (1997)

    Google Scholar 

  14. S.D. Luo, M. Qian, M. Ashraf Imam, Microwave sintering of titanium and titanium alloys (Elsevier, New York, 2015)

    Google Scholar 

  15. G. Gagg, E. Ghassemieh, F.E. Wiria, Effects of sintering temperature on morphology and mechanical characteristics of 3D printed porous titanium used as dental implant. Mater. Sci. Eng. C 33(7), 3858–3864 (2013)

    Google Scholar 

  16. X.-L. Gao, L.-J. Zhang, J. Liu, J.-X. Zhang, A comparative study of pulsed Nd:YAG laser welding and TIG welding of thin Ti6Al4V titanium alloy plate. Mater. Sci. Eng. A 559, 14–21 (2013)

    Google Scholar 

  17. A.B. Short, Gas tungsten arc welding of α + β titanium alloys: a review. Mater. Sci. Technol. 25(3), 309–324 (2009)

    Google Scholar 

  18. R. Zong, J. Chen, C. Wu, G.K. Padhy, Influence of shielding gas on undercutting formation in gas metal arc welding. J. Mater. Process. Technol. 234, 169–176 (2016)

    Google Scholar 

  19. T.S. Balasubramanian, M. Balakrishnan, V. Balasubramanian, M.A.M. Manickam, Influence of welding processes on microstructure, tensile and impact properties of Ti-6Al-4V alloy joints. Trans. Nonferrous Met. Soc. China 21(6), 1253–1262 (2011)

    Google Scholar 

  20. E. Akman, A. Demir, T. Canel, T. Sinmazçelik, Laser welding of Ti6Al4V titanium alloys. J. Mater. Process. Technol. 209(8), 3705–3713 (2009)

    Google Scholar 

  21. F.M. Ghaini, M.J. Hamedi, M.J. Torkamany, J. Sabbaghzadeh, Weld metal microstructural characteristics in pulsed Nd:YAG laser welding. Script. Mater. 56(11), 955–958 (2007)

    Google Scholar 

  22. S. Wang, X. Wu, Investigation on the microstructure and mechanical properties of Ti–6Al–4V alloy joints with electron beam welding. Mater. Des. 36, 663–670 (2012)

    Google Scholar 

  23. H. Schultz, Electron beam welding (Elsevier, New York, 1994)

    Google Scholar 

  24. A. Saxena, Electron beam welding. in Training Materials for Students. (2014).

  25. Y. Mei et al., Effect of base metal and welding speed on fusion zone microstructure and HAZ hot-cracking of electron-beam welded Inconel 718. Mater. Des. 89, 964–977 (2016)

    Google Scholar 

  26. Y. Li, Y. Zhao, Q. Li, A. Wu, R. Zhu, G. Wang, Effects of welding condition on weld shape and distortion in electron beam welded Ti2AlNb alloy joints. Mater. Des. 114, 226–233 (2017)

    Google Scholar 

  27. D. Yang, H.C. Jiang, M.J. Zhao, L.J. Rong, Microstructure and mechanical behaviors of electron beam welded NiTi shape memory alloys. Mater. Des. 57, 21–25 (2014)

    Google Scholar 

  28. M.S. Węglowski, S. Błacha, A. Phillips, Electron beam welding: techniques and trends. Review. Vacuum 130, 72–92 (2016)

    Google Scholar 

  29. W. Bing, Study on the electron beam welding process of ZTC4 titanium alloy. Rare Met. Mater. Eng. 43(4), 786–790 (2014)

    Google Scholar 

  30. S.Q. Wang et al., Microstructural evolution and mechanical properties of electron beam welded dissimilar titanium alloy joints. Mater. Sci. Eng. A (2017).

  31. H. Zhang, S. Hu, J. Shen, D. Li, X. Bu, Effect of laser beam offset on microstructure and mechanical properties of pulsed laser welded BTi-6431S / TA15 dissimilar titanium alloys. Opt. Laser Technol. 74, 158–166 (2015)

    Google Scholar 

  32. J. Li, J. Shen, S. Hu, H. Zhang, X. Bu, Microstructure and mechanical properties of Ti-22Al-25Nb/TA15 dissimilar joint fabricated by dual-beam laser welding. Opt. Laser Technol. 109(2017), 123–130 (2019)

    Google Scholar 

  33. G.D. Wen, W.Y. Li, S.Q. Wang, H.Z. Guo, D.L. Chen, Strain-controlled fatigue properties of linear friction welded dissimilar joints between Ti–6Al–4V and Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloys. Mater. Sci. Eng. 612, 80–88 (2014)

    Google Scholar 

  34. S.Q. Wang, J.H. Liu, D.L. Chen, Strain-controlled fatigue properties of dissimilar welded joints between Ti–6Al–4V and Ti17 alloys. Mater. Des. 49, 716–727 (2013)

    Google Scholar 

  35. M. Froend et al., Fiber laser welding of dissimilar titanium (Ti-6Al-4V/cp-Ti) T-joints and their laser forming process for aircraft application. Opt. Laser Technol. 96, 123–131 (2017)

    Google Scholar 

  36. F. Fedor, M. Froend, V. Ventzke, P. Alvarez, S. Bauer, K. Nikolai, Metallurgical aspects of joining commercially pure titanium to Ti-6Al-4V alloy in a T-joint configuration by laser beam welding. Int. J. Adv. Manuf. Technol. 97(2018), 2019–2031 (2019)

    Google Scholar 

  37. L. Weiss, L. Weiss, I.J. Lamour, U. De Lorraine, P. De Saurupt, F. Nancy, Mechanical properties and microstructural study of homogeneous and heterogeneous laser welds in α, β, and α + β titanium alloys. Weld World 1, 1–10 (2018)

    Google Scholar 

  38. D. Li, S. Hu, J. Shen, H. Zhang, X. Bu, Microstructure and mechanical properties of laser-welded joints of Ti–22Al–25Nb/TA15 dissimilar titanium alloys. J. Mater. Eng. Perform. 25(5), 1880–1888 (2016)

    Google Scholar 

  39. C.T. Hsieh, C.Y. Chu, R.K. Shiue, L.W. Tsay, The effect of post-weld heat treatment on the notched tensile fracture of Ti–6Al–4V to Ti–6Al–6V–2Sn dissimilar laser welds. J. Mater. 59, 227–232 (2014)

    Google Scholar 

  40. C.Y. Chu, C.T. Hsieh, L.W. Tsay, “Microstructure and notched tensile fracture of Ti–6Al–4V to Ti–4.5Al–3V–2Fe–2Mo dissimilar welds. Mater. Des. 1, 1 (2014)

    Google Scholar 

  41. C.T. Hsieh, R.K. Shiue, R. Huang, L.W. Tsay, The effect of post-weld heat treatment on the microstructure and notched tensile fracture of Ti–15V–3Cr–3Al–3Sn to Ti–6Al–4V dissimilar laser welds. Mater Sci Eng. 653, 139–146 (2016)

    Google Scholar 

  42. K. Zhang, Z. Lei, Y. Chen, M. Liu, Y. Liu, Microstructure characteristics and mechanical properties of laser-TIG hybrid welded dissimilar joints of Ti–22Al–27Nb and TA15. Opt. Laser Technol. 73(2015), 139–145 (2015)

    Google Scholar 

  43. J. Shen, B. Li, S. Hu, H. Zhang, X. Bu, Comparison of single-beam and dual-beam laser welding of Ti–22Al–25Nb/TA15 dissimilar titanium alloys. Opt. Laser. Technol. 93, 118–126 (2017)

    Google Scholar 

  44. S.Q. Wang, J.H. Liu, Z.X. Lu, D.L. Chen, A cyclic deformation of dissimilar welded joints between Ti–6Al–4V and Ti17 alloys: effect of strain ratio. Mater. Sci. Eng. A 598, 122–134 (2014)

    Google Scholar 

  45. S.Q. Wang, J.H. Liu, D.L. Chen, Tensile and fatigue properties of electron beam welded dissimilar joints between Ti–6Al–4V and BT9 titanium alloys. Mater. Sci. Eng. A 584, 47–56 (2013)

    Google Scholar 

  46. H. Zhang, P. He, J. Feng, H. Wu, Interfacial microstructure and strength of the dissimilar joint Ti 3 Al/TC4 welded by the electron beam process. Mater. Sci. Eng. 425, 255–259 (2006)

    Google Scholar 

  47. L. Tan, Z. Yao, W. Zhou, H. Guo, Y. Zhao, Microstructure and properties of electron beam welded joint of Ti–22Al–25Nb/TC11. Aerosp. Sci. Technol. 14, 302–306 (2010)

    Google Scholar 

  48. S.Q. Wang, W.Y. Li, Y. Zhou, X. Li, D.L. Chen, Tensile and fatigue behavior of electron beam welded dissimilar joints of Ti–6Al–4V and IMI834 titanium alloys. Mater. Sci. Eng. 649, 146–152 (2016)

    Google Scholar 

  49. V.E. Yeganeh, P. Li, Effect of beam offset on microstructure and mechanical properties of dissimilar electron beam welded high temperature titanium alloys. Mater. Des. 124, 78–86 (2017)

    Google Scholar 

  50. C. Cheng, B. Yu, Z. Chen, J. Liu, Mechanical properties of electron beam welded dissimilar joints of TC17 and Ti60 alloys. J. Mater. Sci. Technol. 1, 1 (2018)

    Google Scholar 

  51. W.A.B. Iii, J. Hurley, Dissimilar alloy laser beam welding of titanium: Ti-6AI-4V to Beta-C TM, pp. 175–181

  52. T. Ahmed, H.J. Rack, Phase transformations during cooling in α+β titanium alloys. Mater. Sci. Eng. A 243(1), 206–211 (1998)

    Google Scholar 

  53. M. Balasubramanian, V. Jayabalan, V. Balasubramanian, Effect of microstructure on impact toughness of pulsed current GTA welded α-β titanium alloy. Mater. Lett. 62(6–7), 1102–1106 (2008)

    Google Scholar 

  54. Z. Song, K. Nakata, A. Wu, J. Liao, L. Zhou, Influence of probe offset distance on interfacial microstructure and mechanical properties of friction stir butt welded joint of Ti6Al4V and A6061 dissimilar alloys. Mater. Des. 57, 269–278 (2014)

    Google Scholar 

  55. G. Casalino, M. Mortello, P. Peyre, Yb–YAG laser offset welding of AA5754 and T40 butt joint. J. Mater. Process. Technol. 223, 139–149 (2015)

    Google Scholar 

  56. G. Casalino, M. Mortello, Modeling and experimental analysis of fiber laser offset welding of Al-Ti butt joints. Int. J. Adv. Manuf. Technol. 83(1–4), 89–98 (2016)

    Google Scholar 

  57. A. Elefante, M. Nilsen, F. Sikström, A.-K. Christiansson, T. Maggipinto, A. Ancona, Detecting beam offsets in laser welding of closed-square-butt joints by wavelet analysis of an optical process signal. Opt. Laser Technol. 109, 178–185 (2019)

    Google Scholar 

  58. A.H. Deng, Martensitic transformation of titanium alloys. Chin. J. Nonferrous Met 20, 193–199 (1999)

    Google Scholar 

  59. T. Mohandas, D. Banerjee, V.V.K. Rao, Fusion zone microstructure and porosity in electron beam welds of an α+ β titanium alloy. Metall. Mater. Trans. A 30(13), 789–798 (1999)

    Google Scholar 

  60. S. Pang, W. Chen, W. Wang, A quantitative model of keyhole instability induced porosity in laser welding of titanium alloy. Metall. Mater. Trans. A 45(6), 2808–2818 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taqi Ahmad Cheema.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest of any kind involved for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junaid, M., Cheema, T.A. Influence of welding process on the properties of dissimilar titanium alloy weldments: a review. JMST Adv. 2, 61–76 (2020). https://doi.org/10.1007/s42791-020-00034-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42791-020-00034-4

Navigation