Skip to main content
Log in

The Evolution of the Weld Metal Microstructures in Dissimilar Titanium Welds Based on Al and Mo Equivalents

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

CO2 laser welding of Ti-15V-3Cr-3Al-3Sn to Ti-4.5Al-3V-2Fe-2Mo was conducted in the study. The notched fracture and microstructures of the weld metal (WM) with various post-weld aging treatments were studied. In the as-welded sample, the WM comprised only β phase, which was relatively soft and ductile. Moreover, the phase constituent of the as-welded WM was related to the Al and Mo equivalents and further compared with other welds. The microstructural morphologies and microhardness of the WMs of dissimilar welds exhibited significant changes after post-weld aging at distinct temperatures. Increasing the Al equivalent ([Al]EQ) of the WM caused an increased response to age-hardening during post-weld aging treatments. When the aging temperature was increased from 426 to 593 °C, the α precipitates in the WM grew in size, causing a decrease in hardness, but an improvement in toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Ishikawa, O. Kuboyama, M. Niikura and C. Ouchi, in Microstructure and Mechanical Properties Relationship of β-Rich α-β Titanium Alloy: SP-700, Titanium ‘92 Science and Technology, ed. by F. H. Froes, I. Caplan (TMS, San Diego, June, 1992, 1993), p 141–148

  2. P.N. Comley, in Aerospace Part Production Using SP 700, Superplasticity in Advanced Materials—ICSAM 2000, vol. 357–359, ed. by N. Chandra (Materials Science Forum, Orlando, August 2000, 2001), p 41–46

  3. W. Swale and R. Broughton, in Applying Superplastic Forming Principles to Titanium Sheet Metal Forming Problems, Superplasticity in Advanced Materials—ICSAM 2003, vol. 447–448, ed. by R.I. Todd (Materials Science Forum, Oxford, July 2003, 2004,) p 239–246

  4. P.N. Comley, in Lowering The Heat—The Development of Reduced SPF Temperature Titanium Alloys for Aircraft Production, Superplasticity in Advanced Materials—ICSAM 2003, vol. 447–448, ed. by R.I. Todd (Materials Science Forum, Oxford, July 2003, 2004) p 233–238

  5. Y.H. Lin, S.M. Wu, F.H. Kao, S.H. Wang, J.R. Yang, C.C. Yang, and C.S. Chiou, Microtwin Formation in The α Phase of Duplex Titanium Alloys Affected by Strain Rate, Mater. Sci. Eng. A Struct, 2011, 528(6), p 2271–2276

    Article  Google Scholar 

  6. S.H. Wang, H.H. Lee, C.Y. Chen, J.R. Yang, and C.H. Kao, The Variation of Beta Phase Morphology After Creep for Duplex Titanium Alloys, J. Mater. Sci., 2009, 44(2), p 408–413

    Article  Google Scholar 

  7. A. Ogawa, M. Niikura, C. Ouchi, K. Minikawa, and M. Yamada, Development and Applications of Titanium Alloy SP-700 with High Formability, J. Test. Eval., 1996, 24(2), p 100–109

    Google Scholar 

  8. T. Horiya and T. Kishi, Fracture Toughness of Titanium Alloys, Nippon Steel Tech. Rep., 1994, 62, p 85–91

    Google Scholar 

  9. F. Prima, F. Sun, P. Vermaut, T. Gloriant, D. Mantovani, and P.J. Jacques, High Performance Beta Titanium Alloys as a New Material Perspective for Cardiovascular Applications, Mater. Sci. Forum, 2012, 706–709, p 578–583

    Article  Google Scholar 

  10. R.R. Boyer, Attributes, Characteristics, and Applications of Titanium and Its Alloys, JOM-US, 2010, 62(5), p 21–24

    Article  Google Scholar 

  11. R.R. Boyer and R.D. Briggs, The Use of Beta Titanium Alloys in the Aerospace Industry, J. Mater. Eng. Perform., 2013, 22(10), p 2916–2920

    Article  Google Scholar 

  12. O.M. Ivasishin, P.E. Markovsky, S.L. Semiatin, and C.H. Ward, Aging Response of Coarse- and Fine-Grained β Titanium Alloys, Mater. Sci. Eng. A Struct., 2005, 405(1–2), p 296–305

    Article  Google Scholar 

  13. Y. Kawabe and S. Muneki, Strengthening and Toughening of Titanium-Alloys, ISIJ Int., 1991, 31(8), p 785–791

    Article  Google Scholar 

  14. N.K. Babu and S.G.S. Raman, Influence of Current Pulsing on Microstructure and Mechanical Properties of Ti-6Al-4 V TIG Weldments, Sci. Technol. Weld. Join., 2006, 11(4), p 442–447

    Article  Google Scholar 

  15. J.H. Xiong, S.K. Li, F.Y. Gao, and J.X. Zhang, Microstructure and Mechanical Properties of Ti6321 Alloy Welded Joint by GTAW, Mater. Sci. Eng. A Struct., 2015, 640, p 419–423

    Article  Google Scholar 

  16. B. Mehdi, R. Badji, V. Ji, B. Allili, D. Bradai, F. Deschaux-Beaume, and F. Soulie, Microstructure and Residual Stresses in Ti-6Al-4 V Alloy Pulsed and Unpulsed TIG Welds, J. Mater. Process. Technol., 2016, 231, p 441–448

    Article  Google Scholar 

  17. T.S. Balasubramanian, M. Balakrishnan, V. Balasubramanian, and M.A. Muthu, Manickam, Effect of Welding Processes on Joint Characteristics of Ti-6Al-4 V Alloy, Sci. Technol. Weld. Join., 2011, 16(8), p 702–708

    Article  Google Scholar 

  18. X.L. Gao, L.J. Zhang, J. Liu, and J.X. Zhang, A Comparative Study of Pulsed Nd:YAG Laser Welding and TIG Welding of Thin Ti6Al4 V Titanium Alloy Plate, Mater. Sci. Eng. A Struct., 2013, 559, p 14–21

    Article  Google Scholar 

  19. M. Junaid, M.N. Baig, M. Shamir, F.N. Khan, K. Rehman, and J. Haider, A Comparative Study of Pulsed Laser and Pulsed TIG Welding of Ti-5Al-2.5Sn Titanium Alloy Sheet, J. Mater. Process. Technol., 2017, 242, p 24–38

    Article  Google Scholar 

  20. G. Casalino, Advances in Welding Metal Alloys, Dissimilar Metals and Additively Manufactured Parts, Metals-Basel, 2017, 7(2), p 32. 10.3390/met7020032

    Article  Google Scholar 

  21. J.E. Blackburn, C.M. Allen, P.A. Hilton, L. Li, M.I. Hoque, and A.H. Khan, Modulated Nd:YAG Laser Welding of Ti-6Al-4 V, Sci. Technol. Weld. Join., 2010, 15(5), p 433–439

    Article  Google Scholar 

  22. Jing. Liu, Xiaolong. Gao, and Jianxun. Zhang, Effect of Heat Input on the Tensile Damage Evolution in Pulsed Laser Welded Ti6Al4 V Titanium Sheets, J. Mater. Eng. Perform., 2016, 25(11), p 5109–5124

    Article  Google Scholar 

  23. J. Blackburn, C. Allen, P. Hilton, and L. Li, Nd:YAG Laser Welding of Titanium Alloys Using A Directed Gas Jet, J. Laser. Appl., 2010, 22(2), p 71–78

    Article  Google Scholar 

  24. Dalong. Li, Hu. Shengsun, Junqi. Shen, Hao. Zhang, and Bu. Xianzheng, Microstructure and Mechanical Properties of Laser-Welded Joints of Ti-22Al-25Nb/TA15 Dissimilar Titanium Alloys, J. Mater. Eng. Perform., 2016, 25(5), p 1880–1888

    Article  Google Scholar 

  25. C.T. Hsieh, C.Y. Chu, R.K. Shiue, and L.W. Tsay, The Effect of Post-Weld Heat Treatment on the Notched Tensile Fracture of Ti-6Al-4 V to Ti-6Al-6 V-2Sn Dissimilar Laser Welds, Mater. Des., 2014, 59, p 227–232

    Article  Google Scholar 

  26. C.Y. Chu, C.T. Hsieh, and L.W. Tsay, Microstructure and Notched Tensile Fracture of Ti-6Al-4 V to Ti-4.5Al-3 V-2Fe-2Mo Dissimilar Welds, Mater. Des., 2014, 63, p 14–19

    Article  Google Scholar 

  27. C.T. Hsieh, R.K. Shiue, R.T. Huang, and L.W. Tsay, The Effect of Post-Weld Heat Treatment on the Microstructure and Notched Tensile Fracture of Ti-15 V-3Cr-3Al-3Sn to Ti-6Al-4 V Dissimilar Laser Welds, Mater. Sci. Eng. A Struct., 2016, 653, p 139–146

    Article  Google Scholar 

  28. S.Q. Wang, J.H. Liu, and D.L. Chen, Tensile and Fatigue Properties of Electron Beam Welded Dissimilar Joints between Ti-6Al-4 V and BT9 Titanium Alloys, Mater. Sci. Eng. A Struct., 2013, 584, p 47–56

    Article  Google Scholar 

  29. S.Q. Wang, J.H. Liu, and D.L. Chen, Strain-Controlled Fatigue Properties of Dissimilar Welded Joints between Ti-6Al-4 V and Ti17 Alloys, Mater. Des., 2013, 49, p 716–727

    Article  Google Scholar 

  30. G. Welsch, R. Boyer, and E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, OH, 1994, p 685–692

    Google Scholar 

  31. L.W. Tsay, Y.S. Ding, W.C. Chung, and C. Chen, Notched Tensile Strength of SP-700 Laser Welds, Mater. Lett., 2008, 62(6–7), p 1114–1117

    Article  Google Scholar 

  32. L.W. Tsay, C.X. Lee, and C. Chen, Notched Tensile Strength and Fatigue Crack Growth Behavior of Ti-6Al-6 V-2Sn Laser Welds, Mater. Trans., 2009, 50(7), p 1785–1791

    Article  Google Scholar 

  33. L.W. Tsay, Y.J. Wu, and C. Chen, Notched Tensile and Impact Fracture of Ti-15-3 Laser Welds, Metall. Mater. Trans. A, 2011, 42(12), p 3778–3784

    Article  Google Scholar 

  34. H.C. Lin and L.M. Wang, Improved Mechanical Properties of Ti-15 V-3Cr-3Sn-3Al Alloy by Electron Beam Welding Process Plus Heat Treatments and Its Microstructure Evolution, Mater. Chem. Phys., 2011, 126(3), p 891–897

    Article  Google Scholar 

  35. M. Nakai, M. Niinomi, T. Akahori, K. Hayashi, Y. Itsumi, S. Murakami, H. Oyama, and W. Abe, Microstructural Factors Determining Mechanical Properties of Laser-Welded Ti-4.5Al-2.5Cr-1.2Fe-0.1C Alloy for Use in Next-Generation Aircraft, Mater. Sci. Eng. A Struct., 2012, 550, p 55–65

    Article  Google Scholar 

  36. T. Shariff, X. Cao, R.R. Chromik, J.G. Baradari, P. Wanjara, J. Cuddy, and A. Birur, Laser Welding of Ti-5Al-5 V-5Mo-3Cr, Can. Metall. Q., 2011, 50(3), p 263–272

    Article  Google Scholar 

  37. Y.N. Guo, T. Jung, Y.L. Chiu, H.Y. Li, S. Bray, and P. Bowen, Microstructure and Microhardness of Ti6246 Linear Friction Weld, Mater. Sci. Eng. A Struct., 2013, 562, p 17–24

    Article  Google Scholar 

  38. R.T. Huang, W.L. Huang, R.H. Huang, and L.W. Tsay, Effects of Microstructures on the Notch Tensile Fracture Feature of Heat-Treated Ti-6Al-6 V-2Sn Alloy, Mater. Sci. Eng. A Struct, 2014, 595, p 297–305

    Article  Google Scholar 

Download references

Acknowledgments

The funding support of the Ministry of Science and Technology, R. O. C. is acknowledged (Grant number: 101-2221-E019-032-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leu-Wen Tsay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, YD., Hsieh, CT., Shiue, RK. et al. The Evolution of the Weld Metal Microstructures in Dissimilar Titanium Welds Based on Al and Mo Equivalents. J. of Materi Eng and Perform 26, 6006–6012 (2017). https://doi.org/10.1007/s11665-017-3034-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-3034-7

Keywords

Navigation