Skip to main content
Log in

Influenza A infections: predictors of disease severity

  • Bacterial, Fungal and Virus Molecular Biology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Influenza affects approximately 10% of the world’s population annually. It is associated with high morbidity and mortality rates due to its propensity to progress to severe acute respiratory infection, leading to 10–40% of hospitalized patients needing intensive care. Characterizing the multifactorial predictors of poor prognosis is essential for developing strategies against this disease. This study aimed to identify predictors of disease severity in influenza A-infected (IFA-infected) patients and to propose a prognostic score. A retrospective cross-sectional study was conducted with 142 IFA-infected out- and inpatients treated at a tertiary hospital between 2010 and 2018. The viral subtypes, hemagglutinin mutations, viral load, IL-28B SNPs, and clinical risk factors were evaluated according to the patient’s ICU admission. Multivariate analysis identified the following risk factors for disease severity: neuromuscular diseases (OR = 7.02; 95% CI = 1.18–41.75; p = 0.032), cardiovascular diseases (OR = 5.47; 95% CI = 1.96–15.27; p = 0.001), subtype (H1N1) pdm09 infection (OR = 2.29; 95% CI = 1.02–5.15; p = 0.046), and viral load (OR = 1.43; 95% CI = 1.09–1.88; p = 0.009). The prognosis score for ICU admission is based on these predictors of severity presented and ROC curve AUC = 0.812 (p < 0.0001). Our results identified viral and host predictors of disease severity in IFA-infected patients, yielding a prognostic score that had a high performance in predicting the IFA patients’ ICU admission and better results than a viral load value alone. However, its implementation in health services needs to be validated in a broader population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. WHO - World Health Organization (2015) Influenza. a manual for estimating disease burden associated with seasonal influenza. Revision 2018. Available from https://www.who.int/influenza/resources/publications/WHO_CDC_Supplement_Influenza_Burden_HAS.pdf?ua=1. Accessed 2 Mar 2021

  2. Noah DL, Noah JW (2013) Adapting global influenza management strategies to address emerging viruses. AJP Lung Cell Mol Physiol [Internet] 305(2):L108–17. Available from http://ajplung.physiology.org/cgi/doi/10.1152/ajplung.00105.2013. Accessed 8 Mar 2021

  3. Jewell NA, Cline T, Mertz SE et al (2010) Lambda interferon is the predominant interferon induced by influenza A virus infection in vivo. J Virol 84(21):11515–11522. https://doi.org/10.1128/jvi.01703-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hemann EA, Gale M, Savan R (2017) Interferon lambda genetics and biology in regulation of viral control. Front Immunol 8(DEC). https://doi.org/10.3389/fimmu.2017.01707

  5. Jiménez-Sousa MA, Fernández-Rodríguez A, Guzmán-Fulgencio M, García-Álvarez M, Resino S (2013) Meta-analysis: implications of interleukin-28B polymorphisms in spontaneous and treatment-related clearance for patients with hepatitis C. BMC Med 11(1):6. https://doi.org/10.1186/1741-7015-11-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goka EA, Vallely PJ, Mutton KJ, Klapper PE (2014) Mutations associated with severity of the pandemic influenza A(H1N1)pdm09 in humans: a systematic review and meta-analysis of epidemiological evidence. Arch Virol 159(12):3167–3183. https://doi.org/10.1007/s00705-014-2179-z

    Article  CAS  PubMed  Google Scholar 

  7. Clark TW, Ewings S, Medina M-J et al (2016) Viral load is strongly associated with length of stay in adults hospitalised with viral acute respiratory illness. J Infect 73(6):598–606. https://doi.org/10.1016/j.jinf.2016.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  8. Centers for Disease Control and National Center for Immunization and Respiratory Diseases (NCIRD). Flu symptoms & complications. https://www.cdc.gov/flu/about/viruses/types.htm Page last reviewed: August 31, 2020. Accessed October 10, 2020

  9. World Health Organization. Influenza (Seasonal). Geneva: WHO; 4th revision: July 2017. WHO information for the molecular detection of influenza viruses. Available from http://www.who.int/influenza/gisrs_laboratory/collaborating_centres/list/en/index.html. Accessed 2 Mar 2021

  10. Chen H, Wen X, To KKW et al (2010) Quasispecies of the D225G substitution in the hemagglutinin of pandemic influenza A(H1N1) 2009 virus from patients with severe disease in Hong Kong. China J Infect Dis 201(10):1517–1521. https://doi.org/10.1086/652661

    Article  CAS  PubMed  Google Scholar 

  11. Pereira LA, Lapinscki BA, Debur MC, Santos JS, Petterle RR, Nogueira MB, Vidal LRR, De Alemeida SM, Raboni SM (2021) Standardization of a high-performance RT-qPCR for viral load absolute quantification of influenza A. J Virol Methods 301:114439. https://doi.org/10.1016/j.jviromet.2021.114439

    Article  CAS  PubMed  Google Scholar 

  12. Coleman BL, Fadel SA, Fitzpatrick T, Thomas SM (2018) Risk factors for serious outcomes associated with influenza illness in high- versus low- and middle-income countries: systematic literature review and meta-analysis. Influenza Other Respi Viruses 12(1):22–29. https://doi.org/10.1111/irv.12504

    Article  Google Scholar 

  13. Lafond KE, Porter RM, Whaley MJ et al (2021) Global burden of influenza-associated lower respiratory tract infections and hospitalizations among adults: a systematic review and meta-analysis. PLoS Med 18(3):1–17. https://doi.org/10.1371/JOURNAL.PMED.1003550

    Article  Google Scholar 

  14. Alves VRG, Perosa AH, de SouzaLuna LK, Cruz JS, Conte DD, Bellei N (2020) Influenza A(H1N1)PDM09 infection and viral load analysis in patients with different clinical presentations. Mem Inst Oswaldo Cruz. 115(4):1–5. https://doi.org/10.1590/0074-02760200009

    Article  CAS  Google Scholar 

  15. Li CC, Wang L, Eng HL et al (2010) Correlation of pandemic (H1N1) 2009 viral load with disease severity and prolonged viral shedding in children. Emerg Infect Dis 16(8):1265–1272. https://doi.org/10.3201/eid1608.091918

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee N, Chan PK, Rainer TH, Hui D, Choi KW, Cockram CS (2013) Influenza virus load in hospitalised patients. Hong Kong Med J 19(Suppl 4):15–18

    CAS  PubMed  Google Scholar 

  17. Giannella M, Alonso M, de Viedma DG et al (2011) Prolonged viral shedding in pandemic influenza A(H1N1): clinical significance and viral load analysis in hospitalized patients. Clin Microbiol Infect 17(8):1160–1165. https://doi.org/10.1111/j.1469-0691.2010.03399.x

    Article  CAS  PubMed  Google Scholar 

  18. Delgado-Sanz C, Mazagatos-Ateca C, Oliva J, Gherasim A, Larrauri A (2020) Illness severity in hospitalized influenza patients by virus type and subtype, Spain, 2010–2017. Emerg Infect Dis 26(2):220–228. https://doi.org/10.3201/eid2602.181732

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kalil AC, Thomas PG (2019) Influenza virus-related critical illness: pathophysiology and epidemiology. Crit Care 23(1):258. https://doi.org/10.1186/s13054-019-2539-x

    Article  PubMed  PubMed Central  Google Scholar 

  20. Segaloff H, Melidou A, Adlhoch C, Pereyaslov D, Robesyn E, Penttinen P, Olsen SJ, WHO European Region, European Influenza Surveillance Network (2019) Co-circulation of influenza A(H1N1)pdm09 and influenza A(H3N2) viruses, World Health Organization (WHO) European Region, October 2018 to February 2019. Euro Surveill 24(9):1900125. https://doi.org/10.2807/1560-7917.ES.2019.24.9.1900125

    Article  PubMed  PubMed Central  Google Scholar 

  21. Caini S, Kroneman M, Wiegers T, El Guerche-Séblain C, Paget J (2018) Clinical characteristics and severity of influenza infections by virus type, subtype, and lineage: a systematic literature review. Influenza Other Respi Viruses 12(6):780–792. https://doi.org/10.1111/irv.12575

    Article  Google Scholar 

  22. Ketklao S, Boonarkart C, Phakaratsakul S, Auewarakul P, Suptawiwat O (2020) Responses to the Sb epitope contributed to antigenic drift of the influenza A 2009 H1N1 virus. Arch Virol 165(11):2503–2512. https://doi.org/10.1007/s00705-020-04758-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Koel BF, Mögling R, Chutinimitkul S et al (2015) Identification of amino acid substitutions supporting antigenic change of influenza A(H1N1)pdm09 viruses. J Virol 89(7):3763–3775. https://doi.org/10.1128/jvi.02962-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Egli A, Santer DM, O’Shea D, Tyrrell DL, Houghton M (2014) The impact of the interferon-lambda family on the innate and adaptive immune response to viral infections. Emerg Microbes Infect 3(May):1–12. https://doi.org/10.1038/emi.2014.51

    Article  CAS  Google Scholar 

  25. ENSEMBL.ORG. Available in: http://www.ensembl.org/Homo_sapiens/Variation/Population?db=core;r=19:39247647-39248647;v=rs12979860;vdb=variation;vf=204115207. Accessed in: Dec 11th 2021

  26. ENSEMBL.ORG. Available in: http://www.ensembl.org/Homo_sapiens/Variation/Population?db=core;r=19:39252025-39253025;v=rs8099917;vdb=variation;vf=203199634. Accessed in: Dec 11th 2021

  27. Scagnolari C, Midulla F, Riva E et al (2012) Evaluation of interleukin 28B single nucleotide polymorphisms in infants suffering from bronchiolitis. Virus Res 165(2):236–240. https://doi.org/10.1016/j.virusres.2012.02.018

    Article  CAS  PubMed  Google Scholar 

  28. Giamberaldino HIG, Pacheco APO, Pereira LA, Debur MC, Genelhoud G, Raboni SM (2022) Respiratory syncytial virus: host genetic susceptibility and factors associated with disease severity in a cohort of pediatric patients. J Trop Pediatr 68(6). https://doi.org/10.1093/tropej/fmac091

  29. Astudillo P, Angulo J, Pino K et al (2020) Correlation between female sex, IL28B genotype, and the clinical severity of bronchiolitis in pediatric patients. Pediatr Res 87(4):785–795. https://doi.org/10.1038/s41390-019-0623-1

    Article  CAS  PubMed  Google Scholar 

  30. Keshavarz M, Namdari H, Farahmand M, Mehrbod P, Mokhtari-Azad T, Rezaei F (2019) Association of polymorphisms in inflammatory cytokines encoding genes with severe cases of influenza A/H1N1 and B in an Iranian population. Virol J 16(1):1–10. https://doi.org/10.1186/s12985-019-1187-8

    Article  CAS  Google Scholar 

  31. Mettelman RC, Thomas PG (2021) Human susceptibility to influenza infection and severe disease. Cold Spring Harb Perspect Med 11(5):a038711. https://doi.org/10.1101/cshperspect.a038711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. World Health Organization. Influenza (seasonal) Geneva, 2014 [updated 2014, Mar; cited 2014]. Fact Sheet #211. Available from http://www.who.int/mediacentre/factsheets/fs211/en/. Accessed 9 Mar 2021

  33. Mertz D, Kim TH, Johnstone J et al (2013) Populations at risk for severe or complicated influenza illness: systematic review and meta-analysis. BMJ 347(7923):1–15. https://doi.org/10.1136/bmj.f5061

    Article  Google Scholar 

  34. Veerapandian R, Snyder JD, Samarasinghe AE (2018) Influenza in asthmatics: for better or for worse? Front Immunol 9(AUG):1–15. https://doi.org/10.3389/fimmu.2018.01843

    Article  CAS  Google Scholar 

  35. Venkatesan S, Myles PR, Bolton KJ et al (2020) Neuraminidase inhibitors and hospital length of stay: a meta-analysis of individual participant data to determine treatment effectiveness among patients hospitalized with Nonfatal 2009 pandemic influenza A(H1N1) virus infection. J Infect Dis 221(3):356–366. https://doi.org/10.1093/infdis/jiz152

    Article  CAS  PubMed  Google Scholar 

  36. Mulrennan S, Tempone SS, Ling IT et al (2010) Pandemic influenza (H1N1) 2009 pneumonia: CURB-65 score for predicting severity and nasopharyngeal sampling for diagnosis are unreliable. PLoS One 5(9):e12849. https://doi.org/10.1371/journal.pone.0012849. (Published 2010 Sep 21)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yeh CC, Chen YA, Hsu CC et al (2020) Quick-SOFA score ≥ 2 predicts prolonged hospital stay in geriatric patients with influenza infection. Am J Emerg Med 38(4):780–784. https://doi.org/10.1016/j.ajem.2019.06.041

    Article  PubMed  Google Scholar 

  38. Chu SE, Seak CJ, Su TH, Chaou CH, Tseng HJ, Li CH (2020) Prognostic accuracy of SIRS criteria and qSOFA score for in-hospital mortality among influenza patients in the emergency department. BMC Infect Dis 20(1):385. https://doi.org/10.1186/s12879-020-05102-7. (Published 2020 May 29)

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen L, Han X, Li YL, Zhang C, Xing X (2020) IFA-p score: a novel prediction rule for mortality in influenza A-related pneumonia patients. Respir Res 21(1):109. https://doi.org/10.1186/s12931-020-01379-z. (Published 2020 May 8)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Clark TW, Beard KR, Brendish NJ et al (2021) Clinical impact of a routine, molecular, point-of-care, test-and-treat strategy for influenza in adults admitted to hospital (FluPOC): a multicentre, open-label, randomised controlled trial. Lancet Respir Med 9(4):419–429. https://doi.org/10.1016/S2213-2600(20)30469-0

    Article  CAS  PubMed  Google Scholar 

  41. Chan KH, Peiris JSM, Lim W, Nicholls JM, Chiu SS (2008) Comparison of nasopharyngeal flocked swabs and aspirates for rapid diagnosis of respiratory viruses in children. J Clin Virol 42(1):65–69. https://doi.org/10.1016/j.jcv.2007.12.003

    Article  CAS  PubMed  Google Scholar 

  42. Debyle C, Bulkow L, Miernyk K et al (2012) Comparison of nasopharyngeal flocked swabs and nasopharyngeal wash collection methods for respiratory virus detection in hospitalized children using real-time polymerase chain reaction. J Virol Methods 185(1):89–93. https://doi.org/10.1016/j.jviromet.2012.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Fundação Araucária. Project number: 059/2017.

Author information

Authors and Affiliations

Authors

Contributions

Pereira LA: data collection, data analysis and interpretation, drafting the article, final approval. Lapinscki BA: data analysis and interpretation, drafting the article, critical revision, final approval. Santos JS: critical revision and final approval. Debur MC: critical revision, final approval. Petterle RR: data analysis. Nogueira MB: critical revision, final approval. Vidal LRR: data analysis and interpretation, critical revision, final approval. De Almeida SM: critical revision, final approval. Raboni SM: conception, data analysis and interpretation, drafting the article, critical revision, final approval, funding acquisition. All authors approved the final manuscript.

Corresponding author

Correspondence to S. M. Raboni.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Flavio Guimaraes Fonseca

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Supplementary file2 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, L.A., Lapinscki, B.A., Santos, J.S. et al. Influenza A infections: predictors of disease severity. Braz J Microbiol 55, 75–86 (2024). https://doi.org/10.1007/s42770-023-01186-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01186-w

Keywords

Navigation