Skip to main content

Advertisement

Log in

Efficacy of antibiotic combinations in an experimental sepsis model with Pseudomonas aeruginosa

  • Clinical Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Summary

This study aimed to compare the efficacy of fosfomycin, colistin, tobramycin and their dual combinations in an experimental sepsis model. After sepsis was established with a Pseudomonas aeruginosa isolate (P1), antibiotic-administered rats were divided into six groups: Fosfomycin, tobramycin, colistin and their dual combinations were administered by the intravenous or intraperitoneal route to the groups. The brain, heart, lung, liver, spleen and kidney tissues of rats were cultured to investigate bacterial translocation caused by P1. Given the antibiotics and their combinations, bacterial colony counts in liver tissues were decreased in colistin alone and colistin plus tobramycin groups compared with control group, but there were no significant differences. In addition, a non-statistical decrease was found in the spleen tissues of rats in the colistin plus tobramycin group. There was a > 2 log10 CFU/ml decrease in the number of bacterial colonies in the kidney tissues of the rats in the fosfomycin group alone, but the decrease was not statistically significant. However, there was an increase in the number of bacterial colonies in the spleen and kidney samples in the group treated with colistin as monotherapy compared to the control group. The number of bacterial colonies in the spleen samples in fosfomycin plus tobramycin groups increased compared to the control group. Bacterial colony numbers in all tissue samples in the fosfomycin plus colistin group were found to be close to those in the control group. Colistin plus tobramycin combinations are effective against P. aeruginosa in experimental sepsis, and clinical success may be achieved. New in vivo studies demonstrating the ability of P. aeruginosa to biofilm formation in tissues other than the lung are warranted in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Sepsis NLM (2018) (2018) Definitions and guideline changes. Surg Infect 19(2):117–125. https://doi.org/10.1089/sur.2017.278

    Article  Google Scholar 

  2. Kempker JA, Wan HE, Martin GS (2018) Sepsis is a preventable public health problem. Crit Care 22(1):116. https://doi.org/10.1186/s13054-018-2048-3

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rhee C, Dantes R, Epstein L et al (2017) Incidence and trends of sepsis in US hospitals using clinical vs claims data 2009–2014. JAMA 318(13):1241–49. https://doi.org/10.1001/jama.2017.13836)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wu W, Jin Y, Bai F, Jin S (2015) Pseudomonas aeruginosa. In: Tang YW, Sussman M, Liu D, Ian Poxton, Schwartzman J (eds) Molecular medical microbiology. Academic Press, New York, pp.753–67. https://doi.org/10.1016/B978-0-12-397169-2.00041-X

  5. Morata L, Cobos-Trigueros N, Martínez JA et al (2012) Influence of multidrug resistance and appropriate empirical therapy on the 30-day mortality rate of Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 56(9):4833–37. https://doi.org/10.1128/AAC.00750-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bassetti M, Vena A, Croxatto A, Righi E, Guery B (2018) How to manage Pseudomonas aeruginosa infections. Drugs Context 7:212527. https://doi.org/10.7573/dic.212527

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fritzenwanker M, Imirzalioglu C, Herold S, Wagenlehner FM, Zimmer K-P, Chakraborty T (2018) Treatment options for carbapenem-resistant Gram-negative infections. Dtsch Ärztebl Int 115(20–21):345–352. https://doi.org/10.3238/arztebl.2018.0345

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ozbek B, Mataraci Kara E, Er S, Ozdamar M, Yilmaz M (2015) In vitro activities of colistin, tigecycline and tobramycin, alone or in combination, against carbapenem-resistant Enterobacteriaceae strains. J Glob Antimicrob Res 3(4):278–282. https://doi.org/10.1016/j.jgar.2015.09.001

    Article  Google Scholar 

  9. Zusman O, Altunin S, Koppel F, Benattar YD, Gedik H, Paul M (2017) Polymyxin monotherapy or in combination against carbapenem-resistant bacteria: systematic review and meta-analysis. J Antimicrob Chemother 72(1):29–39. https://doi.org/10.1093/jac/dkw377

    Article  CAS  PubMed  Google Scholar 

  10. Koeth LM (2016) Time-kill assay. Clinical microbiology handsbook, 4th edn. ASM Press, Washington

    Google Scholar 

  11. Kmeid JG, Youssef MM, Kanafani ZA, Kanj SS (2013) Combination therapy for Gram-negative bacteria: what is the evidence? Expert Rev Anti Infect Ther 12:1355–1362. https://doi.org/10.1586/14787210.2013.846215

    Article  CAS  Google Scholar 

  12. Park S-Y, Park HJ, Moon SM et al (2012) Impact of adequate empirical combination therapy on mortality from bacteremic Pseudomonas aeruginosa pneumonia. BMC Infect Dis 12:308. https://doi.org/10.1186/1471-2334-12-308

    Article  PubMed  PubMed Central  Google Scholar 

  13. Falagas ME, Vouloumanou EK, Samonis G, Vardakas KZ (2016) Fosfomycin. Clin Microbiol Rev 29(2):321–347. https://doi.org/10.1128/CMR.00068-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Clinical and Laboratory Standards Institute- CLSI (2012) Methods for dilution antimicrobial susceptibility tests f or bacteria that grow aerobically; approved st andard—ninth edition. CLSI document M07-A9. Wayne, PA. Available at: file:///C:/Users/domain/Downloads/03-CLSI-M07-A9–2012%20(1).pdf. Accessed January 2023.https://clsi.org

  15. The European Committee on Antimicrobial Susceptibility Testing - EUCAST. Rationale Documents from EUCAST (2013) Available from: https://www.eucast.org/publications-and-documents/rd. Accessed Mar 2023

  16. The European Committee on Antimicrobial Susceptibility Testing—EUCAST. MIC and zone diameter distributions and ECOFFs Antimicrobial wild type distributions of microorganisms 2018 [cited 2023 January 5, 2023]; Available from: https://www.eucast.org/mic_and_zone_distributions_and_ecoffs

  17. Díez-Aguilar M, Morosini MI, Tedim AP, Rodriguez I, Aktas Z, Canton R (2015) Antimicrobial activity of fosfomycin-tobramycin combination against Pseudomonas aeruginosa isolates assessed by time-kill assays and mutant prevention concentrations. Antimicrob Agents Chemother 59(10):6039–6045. https://doi.org/10.1128/aac.00822-15

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hirsch EB, Raux BR, Zucchi BC, Kim Y, McCoy C, Kirby JE, Wright SB, Eliopoulos GM (2015) Activity of fosfomycin and comparison of several susceptibility testing methods against contemporary urine isolates. Int J Antimicrob Agents 46(6):642–647. https://doi.org/10.1016/j.ijantimicag.2015.08.012

    Article  CAS  PubMed  Google Scholar 

  19. Perdigao-Neto LV, Oliveira MS, Rizek CF, Carrilho CMDM, Costa SF, Levin AS (2014) Susceptibility of multiresistant gram-negative bacteria to fosfomycin and performance of different susceptibility testing methods. Antimicrob Agents Chemother 58(3):1763–1767. https://doi.org/10.1128/AAC.02048-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rodríguez-Gascón A, Canut-Blasco A (2019) Deciphering pharmacokinetics and pharmacodynamics of fosfomycin. Rev Esp Quimioter 32(Supply 1):19–24 (PMID: 31131588)

  21. World Health Organization. Antimicrobial resistance surveillance in Europe 2022–2020 data. Available at: https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2022-2020-data. Accessed January 2023.

  22. Oksuz L, Altay G (2023) Aktas Z (2023) Trends of antibiotic resistance in multidrug-resistant pathogens from blood cultures in a four-year period: a single center experience. Clin Lab 69(6):1302–1312. https://doi.org/10.7754/clin.lab.2023.23031

    Article  CAS  Google Scholar 

  23. Flamm RK, Rhomberg PR, Watters AA, Sweeney K, Ellis-Grosse EJ, Shortridge D (2019) Activity of fosfomycin when tested against US contemporary bacterial isolates. Diagn Microb Infect Dis 93(2):143–46. https://doi.org/10.1016/j.diagmicrobio.2018.08.010

    Article  CAS  Google Scholar 

  24. Walsh CC, McIntosh MP, Peleg AY, Kirkpatrick CM, Bergen PJ (2015) In vitro pharmacodynamics of fosfomycin against clinical isolates of Pseudomonas aeruginosa. J Antimicrob Chemother 70(11):3042–3050. https://doi.org/10.1093/jac/dkv2215

    Article  CAS  PubMed  Google Scholar 

  25. Walsh CC, Landersdorfer CB, McIntosh MP et al (2016) Clinically relevant concentrations of fosfomycin combined with polymyxin B, tobramycin or ciprofloxacin enhance bacterial killing of Pseudomonas aeruginosa, but do not suppress the emergence of fosfomycin resistance. J Antimicrob Chemother 71(8):2218–2229. https://doi.org/10.1093/jac/dkw115

    Article  CAS  PubMed  Google Scholar 

  26. Kocazeybek BS, Arabaci U, Erenturk S, Akdur H (2002) Investigation of various antibiotic combinations using the E-Test method in multiresistant Pseudomonas aeruginosa strains. Chemotherapy 48(1):31–35. https://doi.org/10.1159/000048585

    Article  CAS  PubMed  Google Scholar 

  27. Erdal B, Yalinay M, Elmas C, Yazici GN (2020) Investigation of pseudomonas aeruginosa biofilm formation and quorum sensing genes in piperacillin/tazobactam and ciprofloxacin sub-minimal inhibitory concentrations. Mikrobiyol Bul 54(4):547–558. https://doi.org/10.5578/mb.70087

    Article  PubMed  Google Scholar 

  28. Silver LL (2017) Fosfomycin: mechanism and resistance. Cold Spring Harb Perspect Med 7(2):a025262. https://doi.org/10.1101/cshperspect.a025262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lima DAFS, Nascimento MMP, Vitali LH, Martinez R (2013) In vitro activity of antimicrobial combinations against multidrug-resistant Pseudomonas aeruginosa. Rev Soc Bras Med Trop 46(3):299–303. https://doi.org/10.1590/0037-8682-0012-2013

    Article  Google Scholar 

  30. Samonis G, Maraki S, Karageorgopoulos DE, Vouloumanou EK, Falagas ME (2012) Synergy of fosfomycin with carbapenems, colistin, netilmicin, and tigecycline against multidrug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa clinical isolates. Eur J Clin Microbiol Infect Dis 31:695–701. https://doi.org/10.1007/s10096-011-1360-5

    Article  CAS  PubMed  Google Scholar 

  31. Guennec LL, Coureuil M, Nassif X, Bourdoulous S (2020) Strategies used by bacterial pathogens to cross the blood–brain barrier. Cellular Microbiol 22:e13132. https://doi.org/10.1111/cmi.13132

    Article  CAS  Google Scholar 

  32. Lin TI, Huang YF, Liu PY, Chou CA, Chen YS, Chen YY, Hsieh KS, Chen YS (2016) Pseudomonas aeruginosa infective endocarditis in patients who do not use intravenous drugs: analysis of risk factors and treatment outcomes. J Microbiol Immun Infect 49(4):516–522. https://doi.org/10.1016/j.jmii.2014.08.019

    Article  Google Scholar 

  33. Matzi V, Lindenmann J, Porubsky, et al (2010) Extracellular concentrations of fosfomycin in lung tissue of septic patients. J Antimicrob Chemother 65(5):995–998. https://doi.org/10.1093/jac/dkq070)

    Article  CAS  PubMed  Google Scholar 

  34. Montero MM, Ochoa SD, López-Causapé C et al (2019) Colistin plus meropenem combination is synergistic in vitro against extensively drug-resistant Pseudomonas aeruginosa, including high-risk clones. J Glob Antimicrob Resist 18:37–44. https://doi.org/10.1016/j.jgar.2019.04.012)

    Article  PubMed  Google Scholar 

  35. Lin Y-W, Zhou QT, Cheah S-E et al (2017) Pharmacokinetics/pharmacodynamics of pulmonary delivery of colistin against Pseudomonas aeruginosa in a mouse lung infection model. Antimicrob Agents Chemother 61(3):e02025-e2116. https://doi.org/10.1128/AAC.02025-16.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. MacLeod DL, Barker LM, Sutherland JL et al (2009) Antibacterial activities of a fosfomycin/tobramycin combination: a novel inhaled antibiotic for bronchiectasis. J Antimicrob Chemother 64(4):829–836. https://doi.org/10.1093/jac/dkp282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. MacLeod DL, Velayudhan J, Kenney TF et al (2012) Fosfomycin enhances the active transport of tobramycin in Pseudomonas aeruginosa. Antimicrob Agents Chemother 56(3):1529–1538. https://doi.org/10.1128/AAC.05958-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Horcajada JP, Montero M, Oliver A et al (2019) Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev 32(4):e00031-e119. https://doi.org/10.1128/CMR.00031-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fink MP (2014) Animal models of sepsis Virulence 5(1):143–153. https://doi.org/10.4161/viru.26083

    Article  PubMed  Google Scholar 

  40. Celes MRN, Prado CM, Rossi MA (2013) Sepsis: going to the heart of the matter. Pathobiology 80(2):70–86. https://doi.org/10.1159/000341640

    Article  PubMed  Google Scholar 

  41. Demiraslan H, Dinc G, Ahmed SS et al (2014) Carbapenem-resistant Klebsiella pneumoniae sepsis in corticosteroid receipt mice: tigecycline or colistin monotherapy versus tigecycline/colistin combination. J Chemother 26(5):276–281. https://doi.org/10.1179/1973947813Y.0000000143

    Article  CAS  PubMed  Google Scholar 

  42. Bergen PJ, Forrest A, Bulitta JB, Tsuji BT, Sidjabat HE, Paterson DL, LiJ NRL (2011) Clinically relevant plasma concentrations of colistin in combination with imipenem enhance pharmacodynamic activity against multidrug-resistant Pseudomonas aeruginosa at multiple inocula. Antimicrob Agents Chemother 55(11):5134–5142. https://doi.org/10.1128/AAC.05028-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZA: conceptualization, methodology, in vivo studies, reviewing, supervision and editing. NS: methodology, in vivo studies. LO: ınvestigation, writing, data curation, visualization reviewing, supervision and editing. OB: conceptualization, methodology, in vivo studies, reviewing, supervision and editing. HI: statistical analyses. OO: conceptualization, methodology, reviewing, supervision and editing.

Corresponding author

Correspondence to Lutfiye Oksuz.

Ethics declarations

Ethical approval

This study was carried out following the ethical values specified in the Declaration of Helsinki and was approved by the Istanbul University Animal Experiments Local Ethics Committee (Ethical Approval Number: 2013/129).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aktas, Z., Sonmez, N., Oksuz, L. et al. Efficacy of antibiotic combinations in an experimental sepsis model with Pseudomonas aeruginosa. Braz J Microbiol 54, 2817–2826 (2023). https://doi.org/10.1007/s42770-023-01141-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01141-9

Keywords

Navigation