Skip to main content
Log in

Effect of ginger essential oil and 6-gingerol on a multispecies biofilm of Listeria monocytogenes, Salmonella Typhimurium, and Pseudomonas aeruginosa

  • Food Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the potential antimicrobial and antibiofilm effect of ginger essential oil (GEO) and 6-gingerol on a multispecies biofilm formed by Listeria monocytogenes, Salmonella Typhimurium, and Pseudomonas aeruginosa on a polypropylene surface. The minimum inhibitory concentration concentrations obtained for GEO were 100 and 50 mg/mL and for 6-gingerol 1.25 mg/mL. Sessile cell counts ranged within 5.35–7.35 log CFU/cm2 in the control biofilm, with the highest sessile growth at 72 h. GEO treatments acted on the total population regardless of concentration at 1 and 48 h. L. monocytogenes behaved similarly to the total population, showing GEO action at 1 h and keeping the same pattern at 48, 72, and 96 h. Better action on S. Typhimurium was obtained at times of 1, 72, and 96 h. P. aeruginosa showed logarithmic reduction only when treated with GEO 50 mg at 24 h. As for 6-gingerol, in general, there was no significant action (p > 0.05) on the evaluated sessile cells. GEO showed antimicrobial activity against L. monocytogenes, S. Typhimurium, and P. aeruginosa, acting as an inhibitor of biofilm formation. As for 6-gingerol, it was considered a possible antimicrobial agent but without efficacy during biofilm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ziech RE, Perin AP, Lampugnani C, Sereno MJ, Viana C, Soares VM, Pereira JG, Pinto JPAN, Bersot LS (2016) Biofilm-producing ability and tolerance to industrial sanitizers in Salmonella spp. isolated from Brazilian poultry processing plants. LWT-Food Sci Technol 68:85–90

    Article  CAS  Google Scholar 

  2. Moradali MF, Ghods S, Rehm BH (2017) Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 7(39):1–29

    Google Scholar 

  3. Sereno MJ, Viana C, Pegoraro K, Da Silva DAL, Yamatogi RS, Nero LA, Bersot LS (2019) Distribution, adhesion, virulence and antibiotic resistance of persistence Listeria monocytogenes in a pig slaughterhouse in Brazil. Food Microbiol 84:103234

    Article  CAS  PubMed  Google Scholar 

  4. Costerton JW (1999) Introduction to biofilm. Int J Antimicrob Agents 11(3–4):217–221

    Article  CAS  PubMed  Google Scholar 

  5. Fagerlund A, Langsrud S, Møretrø T (2020) Microbial diversity and ecology of biofilms in food industry environments associated with Listeria monocytogenes persistence. Curr Opin Food Sci 37:171–178

    Article  Google Scholar 

  6. Canton R, Ruiz-Garbajosa P (2011) Co-resistance: an opportunity for the bacteria and resistance genes. Curr Opin Pharmacol 11(5):477–485

    Article  CAS  PubMed  Google Scholar 

  7. Alonso-Calleja C, Guerrero-Ramos E, Alonso-Hernando A, Capita R (2015) Adaptation and cross-adaptation of Escherichia coli ATCC 12806 to several food-grade biocides. Food Control 56:86–94

    Article  CAS  Google Scholar 

  8. Paul D, Chakraborty R, Mandal S (2019) M. Biocides and health-care agents are more than just antibiotics: inducing cross to co-resistance in microbes. Ecotoxicol Environ Saf 174:601–610

    Article  CAS  PubMed  Google Scholar 

  9. Brusotti G, Cesari I, Dentamaro A, Caccialanza G, Massolini G (2014) Isolation and characterization of bioactive compounds from plant resources: the role of analysis in the ethnopharmacological approach. J Pharm Biomed Anal 87:218–228

    Article  CAS  PubMed  Google Scholar 

  10. Imane NI, Fouzia H, Azzahra LF, Ahmed E, Ismail G, Idrissa D, Mohamed HH, Sirine F, Houcine O, Noureddine B (2020) Chemical composition, antibacterial and antioxidant activities of some essential oils against multidrug resistant bacteria. Eur J Integr Med 35:101074

    Article  Google Scholar 

  11. Noori S, Zeynali F, Almasi H (2018) Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control 84:312–320

    Article  CAS  Google Scholar 

  12. Mane MB, Bhandari VM, Ranade VV (2021) Safe water and technology initiative for water disinfection: application of natural plant derived materials. J Water Process Eng 43:102280

    Article  Google Scholar 

  13. Ezzat SM, Ezzat MI, Okba MM, Menze ET, Abdel-Naim AB (2018) The hidden mechanism beyond ginger (Zingiber officinale Roscue) potent in vivo and in vitro anti-inflammatory activity. J Ethnopharmacol 214:113–123

    Article  PubMed  Google Scholar 

  14. Yousfi F, Abrigach F, Petrovic JD, Sokovic M, Ramdani M (2021) Phytochemical screening and evaluation of the antioxidant and antibacterial potential of Zingiber officinale extracts. S Afr J Bot 142:433–440

    Article  CAS  Google Scholar 

  15. Yamamoto-Ribeiro MMG, Grespan R, Kohiyama CY, Ferreira FD, Mossini SAG, Silva EL, De Abreu-Filho BA, Mikcha JAM, Junior MM (2013) Effect of Zingiberofficinale essential oil on Fusarium verticillioides and fumonisin production. Food Chem 141:3147–3152

    Article  CAS  PubMed  Google Scholar 

  16. Kumar NV, Murthy PS, Manjunatha JR, Bettadaiah BK (2014) Synthesis and quorum sensing inhibitory activity of key phenolic compounds of ginger and their derivatives. Food Chem 159:451–457

    Article  PubMed  Google Scholar 

  17. Mickymaray S (2019) Efficacy and mechanism of traditional medicinal plants and bioactive compounds against clinically important pathogens. Antibiotics 8(4):257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bhaskar A, Kumari A, Singh M, Kumar S, Kumar S, Dabla A, Chaturvedi S, Yadav VC, Dwivedi VP (2020) [6]-Gingerol exhibits potent anti-mycobacterial and immunomodulatory activity against tuberculosis. Int Immunopharmacol 87:106809

    Article  CAS  PubMed  Google Scholar 

  19. Oyedemi BO, Kotsia EM, Stapleton PD, Gibbons S (2019) Capsaicin and gingerol analogues inhibit the growth of efflux-multidrug resistant bacteria and R- plasmids conjugal transfer. J Ethnopharmacol 245:111871

    Article  CAS  PubMed  Google Scholar 

  20. Kim HS, Lee SH, Byun Y, Park HD (2015) 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Sci Rep 1:1–11

    Google Scholar 

  21. Viana C, Sereno MJ, Pegoraro K, Yamatogi RS, Call DR, Bersot LS, Nero LA (2019) Distribution, diversity, virulence genotypes and antibiotic resistance for Salmonella isolated from a Brazilian pork production chain. Int J Food Microbiol 310:108310

    Article  CAS  PubMed  Google Scholar 

  22. CLSI, Clinical and Laboratory Standards Institute (2003) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard—sixth edition. CLSI document M07-A6. NCCLS document M7-A6 (ISBN 1–56238–486–4). NCCLS, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087–1898 USA.

  23. dos Santos EAR, Tadielo LE, Schmiedt JA, Orisio PHS, Brugeff EDCL, Possebon FS, dos Santos Bersot L (2023) Inhibitory effects of piperine and black pepper essential oil on multispecies biofilm formation by Listeria monocytogenes, Salmonella Typhimurium, and Pseudomonas aeruginosa. LWT 182:114851

    Article  Google Scholar 

  24. Reis-Teixeira FB, Sousa IP, Alves VF, Furtado NAJC, De Martinis ECP (2019) Evaluation of lemongrass and ginger essential oils to inhibit Listeria monocytogenes in biofilms. J Food Saf 39(4):e12627

    Article  Google Scholar 

  25. Herigstad B, Hamilton M, Heersink J (2001) How to optimize the drop plate method for enumerating bacteria. J Microbiol Methods 44(2):121–129

    Article  CAS  PubMed  Google Scholar 

  26. Macho AP, Zumaquero A, Ortiz-Martín I, Beuzon CR (2007) Competitive index in mixed infections: a sensitive and accurate assay for the genetic analysis of Pseudomonas syringae–plant interactions. Mol Plant Pathol 8(4):437–450

    Article  PubMed  Google Scholar 

  27. Singh RP, Gangadharappa HV, Mruthunjaya K (2018) Phytosome complexed with chitosan for gingerol delivery in the treatment of respiratory infection: vitro and in vivo evaluation. Eur J Pharm Sci 122:214–229

    Article  CAS  PubMed  Google Scholar 

  28. Da Silva FT, Da Cunha KF, Fonseca LM, Antunes MD, El Halal SLM, Fiorentini ÂM, Zavareze ER, Dias ARG (2018) Action of ginger essential oil (Zingiber officinale) encapsulated in proteins ultrafine fiber son the antimicrobial control in situ. Int J Biol Macromol 118(Pt A):107–115

    Article  CAS  PubMed  Google Scholar 

  29. Dos Santos RN, De Santana NB, De Carvalho Tavares IM, Lessa OA, Dos Santos LR, Pereira NE, Soares GA, Oliveira RA, Oliveira JR, Franco M (2020) Enzyme extraction by lab-scale hydrodistillation of ginger essential oil (Zingiber officinale Roscoe): chromatographic and micromorphological analyses. Ind Crops Prod 146:112210

    Article  Google Scholar 

  30. Jayasundara NDB, Arampath P (2021) Effect of variety, location & maturity stage at harvesting, on essential oil chemical composition, and weight yield of Zingiber officinale roscoe grown in Sri Lanka. Heliyon 7(3):06560

    Article  Google Scholar 

  31. Djabou N, Lorenzi V, Guinoiseau E, Andreani S, Giuliani MC, Desjobert JM, Muselli A (2013) Phytochemical composition of Corsican Teucrium essential oils and antibacterial activity against foodborne or toxi-infectious pathogens. Food Control 30:354–363

    Article  CAS  Google Scholar 

  32. Sivasothy Y, Chong WK, Hamid A, Eldeen IM, Sulaiman SF, Awang K (2011) Essential oils of Zingiber officinale var. rubrum Theilade and their antibacterial activities. Food Chem 124(2):514–517

    Article  CAS  Google Scholar 

  33. Jolad SD, Lantz RC, Solyom AM, Chen GJ, Bates RB, Timmermann BN (2004) Fresh organically grown ginger (Zingiber officinale): composition and effects on LPS-induced PGE2 production. Phytochem 65(13):1937–1954

    Article  CAS  Google Scholar 

  34. Chan EWC, Lim YY, Wong SK, Lim KK, Tan SP, Lianto FS, Yong MY (2009) Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chem 113(1):166–172

    Article  CAS  Google Scholar 

  35. Turina ADV, Nolan MV, Zygadlo JA, Perillo MA (2006) Natural terpenes: self-assembly and membrane partitioning. Biophys Chem 122(2):101–113

    Article  CAS  PubMed  Google Scholar 

  36. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46(2):446–475

    Article  CAS  PubMed  Google Scholar 

  37. Boucher C, Waite-Cusic J, Stone D, Kovacevic J (2021) Relative performance of commercial citric acid and quaternary ammonium sanitizers against Listeria monocytogenes under conditions relevant to food industry. Food Microbiol 97:103752

    Article  CAS  PubMed  Google Scholar 

  38. Bellik Y (2014) Total antioxidant activity and antimicrobial potency of the essential oil and oleoresin of Zingiber officinale roscoe. Asian Pac J Trop Dis 4(1):40–44

    Article  CAS  PubMed Central  Google Scholar 

  39. Chakotiya AS, Tanwar A, Narula A, Sharma RK (2017) Zingiber officinale: its antibacterial activity on Pseudomonas aeruginosa and mode of action evaluated by flow cytometry. Microb Pathog 107:254–260

    Article  CAS  PubMed  Google Scholar 

  40. Mazzarrino G, Paparella A, Chaves-López C, Faberi A, Sergi M, Sigismondi C, Compagnone D, Serio A (2015) Salmonella enterica and Listeria monocytogenes inactivation dynamics after treatment with selected essential oils. Food Control 50:794–803

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq, Brasília, DF, Brazil), the Coordination for the Improvement of Higher Education Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES, Brasília, DF, Brazil—Code 001 and CAPES PRINT Project, 88881310254/2018-01), and the Federal University of Paraná (Universidade Federal do Paraná—UFPR; nº 02/2020—RESEARCH/PRPPG/UFPR—Araucária Foundation).

Author information

Authors and Affiliations

Authors

Contributions

EARS: conceptualization, methodology, data curation, writing—original draft, writing—preparation of the original draft. LET: methodology, visualization, investigation. JAS: methodology, visualization, investigation. FSB: formal analysis, writing—review and editing, writing—revision and editing. MOP: formal analysis, writing—review and editing, writing—revision and editing. JGP: formal analysis, writing—review and editing, writing—revision and editing. LSB: supervision, project administration, writing—review and editing, writing, revision and editing.

Corresponding author

Correspondence to Luciano dos Santos Bersot.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors consent for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Luis Augusto Nero

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, E.A.R., Tadielo, L.E., Schmiedt, J.A. et al. Effect of ginger essential oil and 6-gingerol on a multispecies biofilm of Listeria monocytogenes, Salmonella Typhimurium, and Pseudomonas aeruginosa. Braz J Microbiol 54, 3041–3049 (2023). https://doi.org/10.1007/s42770-023-01075-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01075-2

Keywords

Navigation