Skip to main content
Log in

Insights into diversity and L-asparaginase activity of fungal endophytes associated with medicinal plant Grewia hirsuta

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

L-asparaginase is used as one of the prime chemotherapeutic agents to treat acute lymphoblastic leukemia. The present work aimed to study the endophytic fungal diversity of Grewia hirsuta and their ability to produce L-asparaginase. A total of 1575 culturable fungal endophytes belonging to four classes, Agaricomycetes, Dothideomycetes, Eurotiomycetes, and Sordariomycetes, were isolated. The isolates were grouped into twenty-one morphotypes based on their morphological characteristics. Representative species from each group were identified based on their microscopic characteristics and evaluation of the ITS and LSU rDNA sequences. Most of the fungal endophytes were recovered from the leaves compared to other plant parts. Diaporthe sp. was the predominant genus with a colonization frequency of 8.62%. Shannon-Wiener index for diversity ranged from 2.74 to 2.88. All the plant parts showed similar Simpson’s index values, indicating a uniform species diversity. Among the sixty-three fungal endophytes screened, thirty-two were identified as L-asparaginase-producing isolates. The enzyme activities of fungal endophytes estimated by the nesslerization method were found to be in the range of 4.65–0.27 IU/mL with Fusarium foetens showing maximum enzyme activity of 4.65 IU/mL. This study for the first time advocates the production of L-asparaginase from Fusarium foetens along with the endophytic fungal community composition of Grewia hirsuta. The results indicate that the fungal endophyte Fusarium foetens isolated in the present study could be a potent source of L-asparaginase.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pieters R, Carroll WL (2008) Biology and treatment of acute lymphoblastic leukemia. Pediatr Clin North Am. 55(1):1–20

    PubMed  Google Scholar 

  2. Pavlovic S, Kotur N, Stankovic B, Zukic B, Gasic V, Dokmanovic L (2019) Pharmacogenomic and pharmacotranscriptomic profiling of childhood acute lymphoblastic leukemia: paving the way to personalized treatment. Genes (Basel) 10(3):191

    CAS  PubMed  Google Scholar 

  3. Beard MEJ, Crowther D, Galton DAG et al (1970) L-asparaginase in treatment of acute leukaemia and lymphosarcoma. Br Med J 1(5690):191–195

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kidd JG (1953) Regression of transplanted lymphomas induced in vivo by means of normal guinea pig serum: I. Course of transplanted cancers of various kinds in mice and rats given guinea pig serum, horse serum, or rabbit serum. J Exp Med 98(6):565–582

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Broome JD (1963) Evidence that the L-asparaginase of guinea pig serum is responsible for its antilymphoma effects: I. Properties of the L-asparaginase of guinea pig serum in relation to those of the antilymphoma substance. J Exp Med 118:99–120

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mashburn LT, Wriston JC (1964) Tumor inhibitory effect of l-asparaginase from Escherichia coli. Arch Biochem Biophys 105(2):450–452

    CAS  PubMed  Google Scholar 

  7. Keating MJ, Holmes R, Lerner S, Ho DH (1993) L-asparaginase and PEG asparaginase—past, present, and future. Leuk Lymphoma 10(sup1):153–157

    PubMed  Google Scholar 

  8. Chi H, Xia B, Shen J et al (2022) Characterization of a novel and glutaminase-free type II L-asparaginase from Corynebacterium glutamicum and its acrylamide alleviation efficiency in potato chips. Int J Biol Macromol 221:1384–1393

    CAS  PubMed  Google Scholar 

  9. Muneer F, Siddique MH, Azeem F et al (2020) Microbial L-asparaginase: purification, characterization and applications. Arch Microbiol 202(5):967–981

    CAS  PubMed  Google Scholar 

  10. Alam S, Pranaw K, Tiwari R, Khare SK (2019) Recent development in the uses of asparaginase as food enzyme. In: Green Bio-Processes. Springer, pp 55–81

    Google Scholar 

  11. Kornbrust BA, Stringer MA, Lange NEK, Hendriksen HV, Whitehurst R, Oort MV (2009) Asparaginase–an enzyme for acrylamide reduction in food products. Enzymes Food Technol 2:59–87

    Google Scholar 

  12. Kumar K, Kaur J, Walia S, Pathak T, Aggarwal D (2014) L-asparaginase: an effective agent in the treatment of acute lymphoblastic leukemia. Leuk Lymphoma 55(2):256–262

    CAS  PubMed  Google Scholar 

  13. Thakur M, Lincoln L, Niyonzima FN, Sunil SM (2014) Biotransformation isolation, purification and characterization of fungal extracellular L-asparaginase from Mucor hiemalis. J Biocatal Biotransformation 2:1–9

    Google Scholar 

  14. Tosa T, Sano R, Yamamoto K, Nakamura M, Chibata I (1972) L-Asparaginase form Proteus vulgaris. Purification, crystallization, and enzymic properties. Biochemistry 11(2):217–222

    CAS  PubMed  Google Scholar 

  15. Mesas JM, Gil JA, Martn JF (1990) Characterization and partial purification of L-asparaginase from Corynebacterium glutamicum. Microbiology (N Y) 136(3):515–519

    CAS  Google Scholar 

  16. Pritsa AA, Kyriakidis DA (2001) L-Asparaginase of Thermus thermophilus: Purification, properties and identificaation of essential amino acids for its catalytic activity. Mol Cell Biochem 216(1):93–101

    CAS  PubMed  Google Scholar 

  17. Scotti C, Sommi P, Pasquetto MV et al (2010) Cell-cycle inhibition by Helicobacter pylori L-asparaginase. PLoS One 5(11):e13892

    PubMed  PubMed Central  Google Scholar 

  18. El-Bessoumy AA, Sarhan M, Mansour J (2004) Production, isolation, and purification of L-asparaginase from Pseudomonas aeruginosa 50071 using solid-state fermentation. BMB Rep 37(4):387–393

    CAS  Google Scholar 

  19. Aishwarya SS, Selvarajan E, Iyappan S, Rajnish KN (2019) Recombinant l-asparaginase II from Lactobacillus casei subsp. casei ATCC 393 and its anticancer activity. Indian. J Microbiol 59(3):313–320

    CAS  Google Scholar 

  20. Saeed H, Hemida A, El-Nikhely N et al (2020) Highly efficient Pyrococcus furiosus recombinant L-asparaginase with no glutaminase activity: Expression, purification, functional characterization, and cytotoxicity on THP-1, A549 and Caco-2 cell lines. Int J Biol Macromol 156:812–828

    CAS  PubMed  Google Scholar 

  21. Scheetz RW, Whelan HA, Wriston JC (1971) Purification and properties of an L-asparaginase from Fusarium tricinctum. Arch Biochem Biophys 142(1):184–189

    CAS  PubMed  Google Scholar 

  22. Mishra A (2006) Production of L-asparaginase, an anticancer agent, from Aspergillus niger using agricultural waste in solid state fermentation. Appl Biochem Biotechnol 135(1):33–42

    CAS  PubMed  Google Scholar 

  23. Shrivastava A, Khan AA, Shrivastav A, Jain SK, Singhal PK (2012) Kinetic studies of L-asparaginase from Penicillium digitatum. Prep Biochem Biotechnol 42(6):574–581

    CAS  PubMed  Google Scholar 

  24. Monica T, Lincoln L, Niyonzima FN, Sunil SM (2013) Isolation, purification and characterization of fungal extracellular L-asparaginase from Mucor Hiemalis. J Biocatal Biotransformation 2(2):12–14

    Google Scholar 

  25. Farag AM, Hassan SW, Beltagy EA, El-Shenawy MA (2015) Optimization of production of anti-tumor l-asparaginase by free and immobilized marine Aspergillus terreus. Egypt J Aquat Res 41(4):295–302

    Google Scholar 

  26. Meghavarnam AK, Janakiraman S (2017) Solid state fermentation: an effective fermentation strategy for the production of L-asparaginase by Fusarium culmorum (ASP-87). Biocatal Agric Biotechnol 11:124–130

    Google Scholar 

  27. El-Gendy MMAA, Awad MF, El-Shenawy FS, El-Bondkly AMA (2021) Production, purification, characterization, antioxidant and antiproliferative activities of extracellular L-asparaginase produced by Fusarium equiseti AHMF4. Saudi J Biol Sci 28(4):2540–2548

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mostafa SA, Ali OKA (1983) L-asparaginase activity in cell-free extracts of Thermoactinomyces vulgaris 13 MES. Zentralbl Mikrobiol 138(5):397–404

    CAS  PubMed  Google Scholar 

  29. Narayana KJP, Kumar KG, Vijayalakshmi M (2008) L-asparaginase production by Streptomyces albidoflavus. Indian J Microbiol 48(3):331–336

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Amena S, Vishalakshi N, Prabhakar M, Dayanand A, Lingappa K (2010) Production, purification and characterization of L-asparaginase from Streptomyces gulbargensis. Braz J Microbiol 41:173–178

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Deshpande N, Choubey P, Agashe M (2014) Studies on optimization of growth parameters for L-asparaginase production by Streptomyces ginsengisoli. Sci World J 2014:6

    Google Scholar 

  32. El-Naggar NEA, El-Shweihy NM (2020) Bioprocess development for L-asparaginase production by Streptomyces rochei, purification and in-vitro efficacy against various human carcinoma cell lines. Sci Rep 10(1):1–21

    Google Scholar 

  33. Paul JH (1982) Isolation and characterization of a Chlamydomonas L-asparaginase. Biochem 203(1):109–115

    CAS  Google Scholar 

  34. Ebrahiminezhad A, Rasoul-Amini S, Ghoshoon MB, Ghasemi Y (2014) Chlorella vulgaris, a novel microalgal source for L-asparaginase production. Biocatal Agric Biotechnol 3(2):214–217

    Google Scholar 

  35. Castro D, Marques ASC, Almeida MR et al (2021) L-asparaginase production review: Bioprocess design and biochemical characteristics. Appl Microbiol Biotechnol 105(11):4515–4534

    CAS  PubMed  Google Scholar 

  36. Land VJ, Sutow WW, Fernbach DJ, Lane DM, Williams TE (1972) Toxicity of L-asparaginase in children with advanced leukemia. Cancer 30(2):339–347

    CAS  PubMed  Google Scholar 

  37. Schein PS, Rakieten N, Gordon BM, Davis RD, Rall DP (1969) The toxicity of Escherichia coli L-asparaginase. Cancer Res 29(2):426–434

    CAS  PubMed  Google Scholar 

  38. Fonseca MHG, da Silva FT, de Morais SB, Trevizani R (2021) Circumventing the side effects of L-asparaginase. Biomed Pharmacother 139:111616

    CAS  PubMed  Google Scholar 

  39. Ali U, Naveed M, Ullah A et al (2016) L-asparaginase as a critical component to combat Acute Lymphoblastic Leukaemia (ALL): A novel approach to target ALL. Eur J Pharmacol 771:199–210

    CAS  PubMed  Google Scholar 

  40. Souza PM, de Freitas MM, Cardoso SL, Pessoa A, Guerra ENS, Magalhaes PO (2017) Optimization and purification of L-asparaginase from fungi: A systematic review. Crit Rev Oncol Hematol 120:194–202

    PubMed  Google Scholar 

  41. Rajesh PS, Rai VR (2013) Hydrolytic enzymes and quorum sensing inhibitors from endophytic fungi of Ventilago madraspatana Gaertn. Biocatal Agric Biotechnol 2(2):120–124

    Google Scholar 

  42. Terhonen E, Sipari N, Asiegbu FO (2016) Inhibition of phytopathogens by fungal root endophytes of Norway spruce. Biol Control 99:53–63

    Google Scholar 

  43. Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee IJ (2015) Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit Rev Biotechnol 35(1):62–74

    CAS  PubMed  Google Scholar 

  44. Manganyi MC, Ateba CN (2020) Untapped potentials of endophytic fungi: A review of novel bioactive compounds with biological applications. Microorganisms 8(12):1934

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao J, Zhou L, Wang J et al (2010) Endophytic fungi for producing bioactive compounds originally from their host plants. Curr Res, Technol Educ Trop Appl Microbiol Microbial Biotechnol 1:567–576

    Google Scholar 

  46. Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes f oetida that produces Camptothecin. J Nat Prod 68(12):1717–1719

    CAS  PubMed  Google Scholar 

  47. Kour A, Shawl AS, Rehman S et al (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol 24(7):1115–1121

    CAS  Google Scholar 

  48. Manasa C, Nalini MS (2014) L-Asparaginase activity of fungal endophytes from Tabernaemontana heyneana Wall.(Apocynaceae), endemic to the Western Ghats (India). Int Sch Res Notices 2014:7

    Google Scholar 

  49. Chow Y, Ting ASY (2015) Endophytic L-asparaginase-producing fungi from plants associated with anticancer properties. J Adv Res 6(6):869–876

    CAS  PubMed  Google Scholar 

  50. Krishnapura PR, Belur PD (2016) Partial purification and characterization of L-asparaginase from an endophytic Talaromyces pinophilus isolated from the rhizomes of Curcuma amada. J Mol Catal B Enzym 124:83–91

    CAS  Google Scholar 

  51. Birudu RB, Padmavathi P (2018) Secondary metabolites of ethanolic leaf extract of Grewia hirsuta. European J Biomed 5(1):868–870

    CAS  Google Scholar 

  52. Thammanna NRK, Nagaraju N (1990) Medicinal plants of Tirumala. TTD publication, Tirupati, p 55

    Google Scholar 

  53. Ema A, Kumar MS, Rebecca LJ et al (2013) Evaluation of Antiproliferative effect of Grewia hirsuta on HepG2 cell lines. J Acad Ind Res 2(1):1

    Google Scholar 

  54. Rakshith D, Santosh P, Satish S (2013) Isolation and characterization of antimicrobial metabolite producing endophytic Phomopsis sp. from Ficus pumila Linn.(Moraceae). Int J Chem Anal Sci 4(3):156–160

    Google Scholar 

  55. Ainsworth GC, Sussman AS, Sparrow FK (1973) The Fungi: An Advanced Treatise. A Taxonomic Review with Keys: Ascomycetes and Fungi Imperfecti. Volume 4A. Academic Press

    Google Scholar 

  56. Barnett HL, Hunter BB (1998) Illustrated genera of imperfect fungi, 4th edn. The American Phytopathological Society Minnesota USA

    Google Scholar 

  57. Kim JS, Seo SG, Jun BK, Kim JW, Kim SH (2010) Simple and reliable DNA extraction method for the dark pigmented fungus, Cercospora sojina. Plant Pathol J 26(3):289–292

    CAS  Google Scholar 

  58. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18(1):315–322

    Google Scholar 

  59. Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res 98(6):625–634

    CAS  Google Scholar 

  60. Kumar DSS, Hyde KD (2004) Biodiversity and tissue-recurrence of endophytic fungi in Tripterygium wilfordii. Fungal Divers

    Google Scholar 

  61. Arora P, Wani ZA, Ahmad T, Sultan P, Gupta S, Riyaz-Ul-Hassan S (2019) Community structure, spatial distribution, diversity and functional characterization of culturable endophytic fungi associated with Glycyrrhiza glabra L. Fungal Biol 123(5):373–383

    PubMed  Google Scholar 

  62. Polley HW, Wilsey BJ, Derner JD (2003) Do species evenness and plant density influence the magnitude of selection and complementarity effects in annual plant species mixtures? Ecol Lett 6(3):248–256

    Google Scholar 

  63. Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19(7):792–798

    CAS  PubMed  Google Scholar 

  64. Jin Z, Gao L, Zhang L et al (2017) Antimicrobial activity of saponins produced by two novel endophytic fungi from Panax notoginseng. Nat Prod Res 31(22):2700–2703

    CAS  PubMed  Google Scholar 

  65. Theantana T, Hyde KD, Lumyong S (2009) Asparaginase production by endophytic fungi from Thai medicinal plants: cytotoxicity properties. Int J Integr Biol 7(1):1–8

    CAS  Google Scholar 

  66. Kumar R, Sedolkar VK, Triveni AG, Kumar MS, Shivannavar CT, Gaddad SM (2016) Isolation, screening and characterization of L-asparaginase producing fungi from medicinal plants. Int J Pharm Pharm Sci 8(1):281–283

    CAS  Google Scholar 

  67. Gond SK, Mishra A, Sharma VK et al (2012) Diversity and antimicrobial activity of endophytic fungi isolated from Nyctanthes arbor-tristis, a well-known medicinal plant of India. Mycoscience 53(2):113–121

    Google Scholar 

  68. Bezerra JDP, Nascimento CCF, Barbosa RDN et al (2015) Endophytic fungi from medicinal plant Bauhinia forficata: Diversity and biotechnological potential. Braz J Microbiol 46:49–57

    PubMed  PubMed Central  Google Scholar 

  69. Zhao X, Hu Z, Hou D, Xu H, Song P (2020) Biodiversity and antifungal potential of endophytic fungi from the medicinal plant Cornus officinalis. Symbiosis 81(3):223–233

    CAS  Google Scholar 

  70. Shi Y, Xie H, Cao L et al (2017) Effects of Cd-and Pb-resistant endophytic fungi on growth and phytoextraction of Brassica napus in metal-contaminated soils. Environ Sci Pollut Res 24(1):417–426

    CAS  Google Scholar 

  71. Zheng YK, Miao CP, Chen HH et al (2017) Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease. J Ginseng Res 41(3):353–360

    PubMed  Google Scholar 

  72. Schoch CL, Sung GH, López-Giráldez F et al (2009) The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 58(2):224–239

    CAS  PubMed  Google Scholar 

  73. He X, Han G, Lin Y et al (2012) Diversity and decomposition potential of endophytes in leaves of a Cinnamomum camphora plantation in China. Ecol Res 27(2):273–284

    Google Scholar 

  74. Chen J, Hu KX, Hou XQ, Guo SX (2011) Endophytic fungi assemblages from 10 Dendrobium medicinal plants (Orchidaceae). World J Microbiol Biotechnol 27(5):1009–1016

    Google Scholar 

  75. Shipunov A, Newcombe G, Raghavendra AKH, Anderson CL (2008) Hidden diversity of endophytic fungi in an invasive plant. Am J Bot 95(9):1096–1108

    PubMed  Google Scholar 

  76. Crozier J, Thomas SE, Aime MC, Evans HC, Holmes KA (2006) Molecular characterization of fungal endophytic morphospecies isolated from stems and pods of Theobroma cacao. Plant Pathol 55(6):783–791

    CAS  Google Scholar 

  77. Huang WY, Cai YZ, Hyde KD, Corke H, Sun M (2008) Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Divers

    Google Scholar 

  78. Ma B, Lv X, Warren A, Gong J (2013) Shifts in diversity and community structure of endophytic bacteria and archaea across root, stem and leaf tissues in the common reed, Phragmites australis, along a salinity gradient in a marine tidal wetland of northern China. Antonie van Leeuwenhoek 104(5):759–768

    PubMed  Google Scholar 

  79. Cui XX, Wang L, Fang HY, Zheng YG, Su CY (2022) The cultivable endophytic fungal community of Scutellaria baicalensis: diversity and relevance to flavonoid production by the host. Plant Signal Behav 17(1):2068834

    PubMed  PubMed Central  Google Scholar 

  80. Verma VC, Gond SK, Kumar A, Kharwar RN, Strobel G (2007) The endophytic mycoflora of bark, leaf, and stem tissues of Azadirachta indica A. Juss (Neem) from Varanasi (India). Microb Ecol 54(1):119–125

    CAS  PubMed  Google Scholar 

  81. Juybari HZ, Tajick Ghanbary MA, Rahimian H, Karimi K, Arzanlou M (2019) Seasonal, tissue and age influences on frequency and biodiversity of endophytic fungi of Citrus sinensis in Iran. For Pathol 49(6):e12559

    Google Scholar 

  82. Gautam AK, Kant M, Thakur Y (2013) Isolation of endophytic fungi from Cannabis sativa and study their antifungal potential. Arch Phytopathol Plant Prot 46(6):627–635

    Google Scholar 

  83. Chareprasert S, Piapukiew J, Thienhirun S, Whalley AJS, Sihanonth P (2006) Endophytic fungi of teak leaves Tectona grandis L. and rain tree leaves Samanea saman Merr. World J Microbiol Biotechnol 22(5):481–486

    Google Scholar 

  84. Harrison JG, Griffin EA (2020) The diversity and distribution of endophytes across biomes, plant phylogeny and host tissues: how far have we come and where do we go from here? Environ Microbiol 22(6):2107–2123

    PubMed  PubMed Central  Google Scholar 

  85. Nascimento TL, Oki Y, Lima DMM, Almeida-Cortez JS, Fernandes GW, Souza-Motta CM (2015) Biodiversity of endophytic fungi in different leaf ages of Calotropis procera and their antimicrobial activity. Fungal Ecol 14:79–86

    Google Scholar 

  86. Arfi Y, Buee M, Marchand C, Levasseur A, Record E (2012) Multiple markers pyrosequencing reveals highly diverse and host-specific fungal communities on the mangrove trees a vicennia marina and R hizophora stylosa. FEMS Microbiol Ecol 79(2):433–444

    PubMed  Google Scholar 

  87. Hardoim PR, Van Overbeek LS, Berg G et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320

    PubMed  PubMed Central  Google Scholar 

  88. Dos Santos GD, Gomes RR, Gonçalves R et al (2021) Molecular identification and antimicrobial activity of foliar endophytic fungi on the Brazilian pepper tree (Schinus terebinthifolius) reveal new species of Diaporthe. Curr Microbiol 78(8):3218–3229

    CAS  PubMed  Google Scholar 

  89. Del Frari G, Gobbi A, Aggerbeck MR, Oliveira H, Hansen LH, Ferreira RB (2019) Characterization of the wood mycobiome of Vitis vinifera in a vineyard affected by esca. Spatial distribution of fungal communities and their putative relation with leaf symptoms. Front Plant Sci 10:910

    PubMed  PubMed Central  Google Scholar 

  90. de Siqueira VM, Conti R, de Araújo JM, Souza-Motta CM (2011) Endophytic fungi from the medicinal plant Lippia sidoides Cham. and their antimicrobial activity. Symbiosis 53(2):89–95

    CAS  Google Scholar 

  91. Cannon PF, Simmons CM (2002) Diversity and host preference of leaf endophytic fungi in the Iwokrama Forest Reserve, Guyana. Mycologia 94(2):210–220

    PubMed  Google Scholar 

  92. Yuan ZL, Chen YC, Yang Y (2009) Diverse non-mycorrhizal fungal endophytes inhabiting an epiphytic, medicinal orchid (Dendrobium nobile): Estimation and characterization. World J Microbiol Biotechnol 25(2):295–303

    Google Scholar 

  93. Li P, Wu Z, Liu T, Wang Y (2016) Biodiversity, phylogeny, and antifungal functions of endophytic fungi associated with zanthoxylum bungeanum. Int J Mol Sci 17(9):1541

    PubMed  PubMed Central  Google Scholar 

  94. Uzma F, Murthy KN, Srinivas C (2016) Optimization of physiological conditions for L-asparaginase production by endophytic fungi (Fusarium solani) isolated from Tinospora cordifolia (Willd.) Hook. F & Thomson. Eur J Exp Biol 6:37–45

    CAS  Google Scholar 

  95. Pádua APSLD, Freire KTLDS, Oliveira TGLD et al (2018) Fungal endophyte diversity in the leaves of the medicinal plant Myracrodruon urundeuva in a Brazilian dry tropical forest and their capacity to produce L-asparaginase. Acta Bot Brasilica 33:39–49

    Google Scholar 

  96. Dame ZT, Silima B, Gryzenhout M, van Ree T (2016) Bioactive compounds from the endophytic fungus Fusarium proliferatum. Nat Prod Res 30(11):1301–1304

    CAS  PubMed  Google Scholar 

  97. Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One 8(9):e71805

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ran X, Zhang G, Li S, Wang J (2017) Characterization and antitumor activity of camptothecin from endophytic fungus Fusarium solani isolated from Camptotheca acuminate. Afr Health Sci 17(2):566–574

    PubMed  PubMed Central  Google Scholar 

  99. Ito K, Matsushima K, Koyama Y (2012) Gene cloning, purification, and characterization of a novel peptidoglutaminase-asparaginase from Aspergillus sojae. Appl Environ Microbiol 78(15):5182–5188

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Dias FFG, Ruiz ALTG, Della Torre A, Sato HH (2016) Purification, characterization and antiproliferative activity of L-asparaginase from Aspergillus oryzae CCT 3940 with no glutaminase activity. Asian Pac J Trop Biomed 6(9):785–794

    CAS  Google Scholar 

  101. Prihanto AA, Caisariyo IO, Pradarameswari KA (2019) Aspergillus sp. as a potential producer for L-Asparaginase from mangrove (Avicennia germinans). In: IOP Conference Series: Earth and Environmental Science, vol 230. IOP Publishing, p 12101

    Google Scholar 

  102. Moharram A, Zohri AN, Seddek N (2016) L-Asparaginase production by endophytic fungi isolated from Withania Somnifera in Egypt. SS Int J Multidiscip Res 2:30–40

    Google Scholar 

  103. Hölker U, Höfer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64(2):175–186

    PubMed  Google Scholar 

  104. Bhavana NS, Prakash HS, Nalini MS (2020) Fungal Endophytes from Tabernaemontana heyneana Wall.(Apocynaceae), their Molecular Characterization, L-asparaginase and Antioxidant Activities. Jordan J Biol Sci 13(4):543–550

    CAS  Google Scholar 

Download references

Funding

The study was funded by CSIR (Council of Scientific and Industrial Research) under Junior Research Fellowship (File No:09/119(0218)/2019-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreedharamurthy Satish.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Solange I. Mussatto

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parashiva, J., Nuthan, B.R., Rakshith, D. et al. Insights into diversity and L-asparaginase activity of fungal endophytes associated with medicinal plant Grewia hirsuta. Braz J Microbiol 54, 1573–1587 (2023). https://doi.org/10.1007/s42770-023-01045-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01045-8

Keywords

Navigation