Skip to main content
Log in

Optimization of the first extraction protocol for metabolomic studies of Brucella abortus

  • Veterinary Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Brucellosis is a zoonosis prevalent worldwide and very recurrent in less developed or developing regions. This zoonosis affects livestock, generating high financial losses to producers, in addition to transmitting diseases to humans through meat consumption or handling contaminated products and animals. In this study, five extraction methods for Brucella abortus intracellular metabolites, using different solvent compositions and cell membrane disruption procedures, were evaluated. Derivatized extracts were analyzed by GC-HRMS. Raw data were processed in XCMS Online and the results were evaluated through multivariate statistical analysis using the MetaboAnalyst platform. The identification of the extracted metabolites was performed by the Unknowns software using the NIST 17.L library. The extraction performance of each method was evaluated for thirteen representative metabolites, comprising four different chemical classes. Most of these compounds are reported in the cell membrane composition of Gram-negative bacteria. The method based on extraction with methanol/chloroform/water presented the best performance in the evaluation of the extracted compounds and in the statistical results. Therefore, this method was selected for extracting intracellular metabolites from cultures of Brucella abortus for untargeted metabolomics analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. World Organisation for Animal Health (OIE) (2018) Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. OIE, ch. 3.1.4. https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/3.01.04_BRUCELLOSIS.pdf. Accessed in March 2023

  2. Centers for Disease Control and Prevention (CDC) (2018) Bioterrorism Agents/Diseases. CDC, Atlanta. https://emergency.cdc.gov/agent/agentlist-category.asp. Accessed in March 2023

  3. Barbier T, Nicolas C, Letesson JJ (2011) Brucella adaptation and survival at the crossroad of metabolism and virulence. FEBS Lett 585:2929–2934. https://doi.org/10.1016/j.febslet.2011.08.011

    Article  CAS  PubMed  Google Scholar 

  4. Ducrotoy MJ, Conde-Álvarez R, Blasco JM, Moriyón I (2016) A review of the basis of the immunological diagnosis of ruminant brucellosis. Vet Immunol Immunopathol 171:81–102. https://doi.org/10.1016/j.vetimm.2016.02.002

    Article  CAS  PubMed  Google Scholar 

  5. El-Sayed A, Awad W (2018) Brucellosis: evolution and expected comeback. Int J Vet Sci Med 6:S31–S35. https://doi.org/10.1016/j.ijvsm.2018.01.008

    Article  PubMed  PubMed Central  Google Scholar 

  6. Leclercq SO, Cloeckaert A, Zygmunt MS (2020) Taxonomic organization of the family brucellaceae based on a phylogenomic approach. Front Microbiol 10:1–12. https://doi.org/10.3389/fmicb.2019.03083

    Article  Google Scholar 

  7. Tang T, Xu Y, Wang J, Tan X, Zhao X, Zhou P, Kong F, Zhu C, Lu C, Lin H (2021) Evaluation of the differences between biofilm and planktonic Brucella abortus via metabolomics and proteomics. Funct Integr Genomics 21:421–433. https://doi.org/10.1007/s10142-021-00788-7

    Article  CAS  PubMed  Google Scholar 

  8. Vu SH, Kim B, Reyes AWB, Huy TXN, Lee JH, Kim S, Kim HJ (2021) Global metabolomic analysis of blood from mice infected with Brucella abortus. J Vet Med Sci 83:482–486. https://doi.org/10.1292/jvms.20-0630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dudzik D, Barbas-Bernardos C, García A, Barbas C (2018) Quality assurance procedures for mass spectrometry untargeted metabolomics. a review. J Pharm Biomed Anal 147:149–173. https://doi.org/10.1016/j.jpba.2017.07.044

    Article  CAS  PubMed  Google Scholar 

  10. Pinu FR, Beale DJ, Paten AM, Kouremenos K, Swarup S, Schirra HJ, Wishart D (2019) Systems biology and multi-omics integration: viewpoints from the metabolomics research community. Metabolites 9:1–31. https://doi.org/10.3390/metabo9040076

    Article  CAS  Google Scholar 

  11. Duportet X, Aggio RBM, Carneiro S, Villas-Bôas SG (2012) The biological interpretation of metabolomic data can be misled by the extraction method used. Metabolomics 8:410–421. https://doi.org/10.1007/s11306-011-0324-1

    Article  CAS  Google Scholar 

  12. Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos EV (2006) The new global map of human brucellosis. Lancet Infect Dis 6:91–99. https://doi.org/10.1016/S1473-3099(06)70382-6

    Article  PubMed  Google Scholar 

  13. Vishnu US, Sankarasubramanian J, Gunasekaran P, Rajendhran J (2017) Identification of potential antigens from non-classically secreted proteins and designing novel multitope peptide vaccine candidate against Brucella melitensis through reverse vaccinology and immunoinformatics approach. Infect Genet Evol 55:151–158. https://doi.org/10.1016/j.meegid.2017.09.015

    Article  CAS  PubMed  Google Scholar 

  14. Goodacre R, Ellis D, Hollywood K, Trivedi D, Muhamadali H (2013) Laboratory Guide for Metabolomics Experiments. Manchester Institute of Biotechnology, Manchester. https://www.biospec.net/wordpress/wp-content/uploads/Metabolomics-laboratory-handbook.pdf. Accessed in March 2023

  15. Fiehn O (2016) Metabolomics by gas chromatography–mass spectrometry: combined targeted and untargeted profiling. Curr Protoc Mol Biol 114:30.4.1–32. https://doi.org/10.1002/0471142727.mb3004s114

  16. t’Kindt R, Scheltema RA, Jankevics A, Brunker K, Rijal S, Dujardin JC, Breitling R, Watson DG, Coombs GH, Decuypere S (2010) Metabolomics to unveil and understand phenotypic diversity between pathogen populations. PLoS Negl Trop Dis 4:e904. https://doi.org/10.1371/journal.pntd.0000904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49:1137–1146. https://doi.org/10.1194/jlr.D700041-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Canuto GAB, Dörr F, Lago JHG, Tempone AG, Pinto E, Pimenta DC, Farah JPS, Alves MJM, Tavares MFM (2017) New insights into the mechanistic action of methyldehydrodieugenol B towards Leishmania (L.) infantum via a multiplatform based untargeted metabolomics approach. Metabolomics 13:1–14. https://doi.org/10.1007/s11306-017-1193-z

    Article  CAS  Google Scholar 

  19. Holman JD, Tabb DL, Mallick P (2014) Employing ProteoWizard to convert raw mass spectrometry data. Curr Protoc Bioinforma 46:13.24.1–9. https://doi.org/10.1002/0471250953.bi1324s46

  20. Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS online: A web-based platform to process untargeted metabolomic data. Ana Chem 84:5035–5039. https://doi.org/10.1021/ac300698c

    Article  CAS  Google Scholar 

  21. Chong J, Wishart DS, Xia J (2019) Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr Protoc Bioinforma 68:1–128. https://doi.org/10.1002/cpbi.86

    Article  Google Scholar 

  22. Hackstadt AJ, Hess AM (2009) Filtering for increased power for microarray data analysis. BMC Bioinforma 10:1–12. https://doi.org/10.1186/1471-2105-10-11

    Article  Google Scholar 

  23. Xia J, Psychogios N, Young N, Wishart DS (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37:W652–W660. https://doi.org/10.1093/nar/gkp356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xia J, Wishart DS (2011) Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc 6:743–760. https://doi.org/10.1038/nprot.2011.319

    Article  CAS  PubMed  Google Scholar 

  25. Gika HG, Theodoridis GA, Wingate JE, Wilson ID (2007) Within-day reproducibility of an HPLC - MS-based method for metabonomic analysis: application to human urine research articles. J Proteome Res 6:3291–3303

    Article  CAS  PubMed  Google Scholar 

  26. Westgard JO, Barry PL, Hunt MR, Groth T (1981) A multi-rule shewhart chart for quality control in clinical chemistry. Clin Chem 27:493–501

    Article  CAS  PubMed  Google Scholar 

  27. Lalman JA, Bagley DM (2004) Extracting long-chain fatty acids from a fermentation medium. Am Oil Chem Soc 81:105–110. https://doi.org/10.1007/s11746-004-0866-y

    Article  CAS  Google Scholar 

  28. Haynes WM (2017) Hanbook of Chemistry and Physics. CRC Press, Boca Raton, pp 1–2643

    Google Scholar 

  29. Cajka T, Fiehn O (2016) Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal Chem 88:524–545. https://doi.org/10.1021/acs.analchem.5b04491

    Article  CAS  PubMed  Google Scholar 

  30. Mas S, de Juan A, Tauler R, Olivieri AC, Escandar GM (2010) Application of chemometric methods to environmental analysis of organic pollutants: a review. Talanta 80:1052–1067. https://doi.org/10.1016/j.talanta.2009.09.044

    Article  CAS  PubMed  Google Scholar 

  31. Thiele OW, Lacave C, Asselineau J (1969) On the fatty acids of Brucella abortus and Brucella melitensis. European J Biochem 7:393–396. https://doi.org/10.1111/j.1432-1033.1969.tb19621.x

    Article  CAS  Google Scholar 

  32. Zhang P, Xing X, Wang X, Yang B, Fu C, Liu D, Guo C (2014) Comparison of fatty acid analysis with serotype and pulsed-field gel electrophoresis for typing salmonella isolated from retail foods and human. J Food Prot 34:388–395. https://doi.org/10.1111/jfs.12150

    Article  CAS  Google Scholar 

  33. Li Y, Wu S, Wang L, Li Y, Shi F, Wang X (2010) Differentiation of bacteria using fatty acid profiles from gas chromatography-tandem mass spectrometry. J Sci Food Agric 90:1380–1383

    Article  CAS  PubMed  Google Scholar 

  34. Moreno E, Pitt MW, Jones LM, Schurig GG, Berman DT (1979) Purification and characterization of smooth and rough lipopolysaccharides from Brucella abortus. J Bacteriol 138:361–369. https://doi.org/10.1128/jb.138.2.361-369.1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Knoll KE, Lindeque Z, Adeniji AA, Oosthuizen CB, Lall N, Loots DT (2021) Elucidating the antimycobacterial mechanism of action of decoquinate derivative rmb041 using metabolomics. Antibiotics 10:1–16. https://doi.org/10.3390/antibiotics10060693

    Article  CAS  Google Scholar 

  36. Doi Y (2019) Glycerol metabolism and its regulation in lactic acid bacteria. Appl Microbiol Biotechnol 103:5079–5093. https://doi.org/10.1007/s00253-019-09830-y

    Article  CAS  PubMed  Google Scholar 

  37. But SY, Khmelenina VN, Reshetnikov AS, Mustakhimov II, Kalyuzhnaya MG, Trotsenko YA (2015) Sucrose metabolism in halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. Arch Microbiol 197:471–480. https://doi.org/10.1007/s00203-015-1080-9

    Article  CAS  PubMed  Google Scholar 

  38. Fu X, Zhang Y, Shi B, Wu X, Zhao H, Xin Z, Yang J (2022) Benzoic Acid Metabolism and Lipopolysaccharide Synthesis of Intestinal Microbiome Affects the Health of Ruminants under Free-Range and Captive Mode. Life 12:1–14. https://doi.org/10.3390/life12071071

    Article  CAS  Google Scholar 

  39. Moore BS, Hertweck C, Hopke JN, Izumikawa M, Kalaitzis JA, Nilsen G, O’Hare T, Piel J, Shipley PR, Xiang L, Austin MB, Noel JP (2002) Plant-like biosynthetic pathways in bacteria: from benzoic acid to chalcone. J Nat Prod 65:1956–1962. https://doi.org/10.1021/np020230m

    Article  CAS  PubMed  Google Scholar 

  40. Cheng Z, Li Z, Yin Y, Lian Z, Abdelgawad HA, Hu H, Guan X, Zuo D, Cai Y, Ding C, Wang S, Li T, Qi J, Tian M, Yu S (2021) Characteristics of Brucella abortus vaccine strain A19 reveals its potential mechanism of attenuated virulence. Vet Microbiol 254:1–8. https://doi.org/10.1016/j.vetmic.2021.109007

    Article  CAS  Google Scholar 

  41. Tortora GJ, Funke BR, Case CL (2017) Microbiologia. Artmed, Porto Alegre, pp. 80–85

  42. Bishop RE, Gibbons HS, Guina T, Trent MS, Miller SI, Raetz CRH (2000) Transfer of palmitate from phospholipids to lipid A in outer membranes of Gram-negative bacteria. EMBO J 19:5071–5080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support. The authors are also thankful to the Laboratório Federal de Defesa Agropecuária em Minas Gerais (LFDA-MG) and to the Ministério da Agricultura, Pecuária e Abastecimento of Brazil, for providing its infrastructure and supplies for the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adriana N. de Macedo or Adriana F. Faria.

Ethics declarations

Competing interest

The authors declare no conflict of interest.

Additional information

Responsible Editor: Maria Aparecida Scatamburlo Moreira

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 697 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corrêa, J.M.M., de Oliveira, M.L.G., de Souza, P.G. et al. Optimization of the first extraction protocol for metabolomic studies of Brucella abortus. Braz J Microbiol 54, 2383–2392 (2023). https://doi.org/10.1007/s42770-023-01001-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01001-6

Keywords

Navigation