Skip to main content
Log in

Evaluation of phenotypic detection of carbapenemase-producing Pseudomonas spp. from clinical isolates

  • Clinical Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Carbapenems are considered last-resort antibiotics for the treatment of infections caused by multidrug-resistant Gram-negative bacteria. Although the main mechanism of carbapenem-resistance in Pseudomonas aeruginosa is the loss of OprD porin, carbapenemases continue to be a problem worldwide. The aim of this study was to evaluate the performance of phenotypic tests (Carba NP, Blue Carba, and mCIM/eCIM) for detection of carbapenemase-producing Pseudomonas spp. in Brazil. One hundred twenty-seven Pseudomonas spp. clinical isolates from different Brazilian states were submitted to phenotypic and molecular carbapenemase detection. A total of 90 carbapenemase-producing P. aeruginosa and 5 Pseudomonas putida (35, blaVIM-2; 17, blaSPM-1; 2, blaIMP-10; 1, blaVIM-24; 1, blaNDM-1; 39, blaKPC-2). The phenotypic Carba NP, Blue Carba, and mCIM/eCIM showed sensitivity of 94.7%, 93.6%, and 93.6%, and specificity of 90.6%, 100%, and 96.8%, respectively. However, only the Carba NP presented the highest sensitivity and showed the ability in differentiating the carbapenemases between class A and class B using EDTA. Blue Carba failed to detect most of the class B carbapenemases, having the worst performance using EDTA. Our results show changes in the epidemiology of the spread of carbapenemases and the importance of their detection by phenotypic and genotypic tests. Such, it is essential to use analytical tools that faithfully detect bacterial resistance in vitro in a simple, sensitive, rapid, and cost-effective way. Much effort must be done to improve the current tests and for the development of new ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C, Kahlmeter G, Kluytmans J, Carmeli Y, Ouellette M, Outterson K, Patel J, Cavaleri M, Cox EM, Houchens CR, Grayson ML, Hansen P, Singh N, Theuretzbacher U, Magrini N, WHO (2018) Pathogens Priority List Working Group. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic resistant bacteria and tuberculosis. Lancet Infect Dis 18(3):318–327. https://doi.org/10.1016/S1473-3099(17)30753-3

  2. Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S (2019) Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev 32(4):e00031–19. https://doi.org/10.1128/CMR.00031-19. Print 2019 Sep 18.

  3. Tamma PD, Simner PJ (2018) Phenotypic detection of carbapenemase-producing organisms from clinical isolates. J Clin Microbiol 56(11):e01140–18. https://doi.org/10.1128/JCM.01140-18. Print 2018 Nov.

  4. de Oliveira Santos IC, de Andrade NFP, da Conceição Neto OC, da Costa BS, de Andrade Marques E, Rocha-de-Souza CM, Asensi MD, D’Alincourt Carvalho-Assef AP (2019) Epidemiology and antibiotic resistance trends in clinical isolates of Pseudomonas aeruginosa from Rio de Janeiro - Brazil: importance of mutational mechanisms over the years (1995–2015). Infect Genet Evol 73:411–415. https://doi.org/10.1016/j.meegid.2019.05.015

  5. Aurilio C, Sansone P, Barbarisi M, Pota V, Giaccari LG, Coppolino F, Barbarisi A, Passavanti MB, Pace MC (2022) Mechanisms of action of carbapenem resistance. Antibiotics (Basel) 11(3):421. https://doi.org/10.3390/antibiotics11030421

    Article  CAS  PubMed  Google Scholar 

  6. Botelho J, Grosso F, Peixe L (2019) Antibiotic resistance in Pseudomonas aeruginosa - mechanisms, epidemiology and evolution. Drug Resist Updat 44:100640. https://doi.org/10.1016/j.drup.2019.07.002

    Article  PubMed  Google Scholar 

  7. da Cunha RSR, Carniel E, Narvaez GA, Dias CG, Perez LRR (2020) Impact of the blue-carba rapid test for carbapenemase detection on turnaround time for an early therapy against Pseudomonas aeruginosa. Am J Infect Control S0196–6553(20)30802–6.https://doi.org/10.1016/j.ajic.2020.08.018

  8. Bialvaei AZ, Kafil HS, Asgharzadeh M, Yousef Memar M, Yousefi M (2016) Current methods for the identification of carbapenemases. J Chemother 28(1):1–19. https://doi.org/10.1179/1973947815Y.0000000063

    Article  CAS  PubMed  Google Scholar 

  9. da Silva IR, Aires CAM, Conceição-Neto OC, de Oliveira Santos IC, Ferreira Pereira N, Moreno Senna JP, Carvalho-Assef APD, Asensi MD, Rocha-de-Souza CM (2019) Distribution of clinical NDM-1-producing gram-negative bacteria in Brazil. Microb Drug Resist 25(3):394–399. https://doi.org/10.1089/mdr.2018.0240

    Article  CAS  PubMed  Google Scholar 

  10. Franco MRG, Caiaffa‐Filho HH, Burattini MN, Rossi F (2010) Metallo‐beta‐lactamases among imipenem‐resistant Pseudomonas aeruginosa in a Brazilian university hospital. Clinics (Sao Paulo) 65(9):825–829 https://doi.org/10.1590/S1807-59322010000900002

  11. Dortet L, Poirel L, Nordmann P (2012) Rapid detection of carbapenemase-producing Pseudomonas spp. J Clin Microbiol 50(11):3773–3776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pires J, Novais Â, Peixe L (2013) Blue-Carba, an easy biochemical test for detection of diverse carbapenemase producers directly from bacterial cultures. J Clin Microbiol 51(12):4281–4283. https://doi.org/10.1128/JCM.01634-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lalkhen AG, McCluskey A (2008) Clinical tests: sensitivity and specificity. Educ Anaesth Crit Care Pain 8(6):221–223. https://doi.org/10.1093/bjaceaccp/mkn041

    Article  Google Scholar 

  14. Shortridge D, Gales AC, Streit JM, Huband MD, Tsakris A, Jones RN (2019) Geographic and temporal patterns of antimicrobial resistance in Pseudomonas aeruginosa over 20 years from the SENTRY Antimicrobial Surveillance Program, 1997–2016. 6(Suppl1):S63-S68. https://doi.org/10.1093/ofid/ofy343 eCollection 2019.

  15. Gales AC, Menezes LC, Silbert S, Sader HS (2003) Dissemination in distinct Brazilian regions of an epidemic carbapenem-resistant Pseudomonas aeruginosa producing SPM metallo-beta lactamase. J Antimicrob Chemother 52(4):699–702. https://doi.org/10.1093/jac/dkg416

    Article  CAS  PubMed  Google Scholar 

  16. Rizek C, Fu L, Dos Santos LC, Leite G, Ramos J, Rossi F, Guimaraes T, Levin AS, Costa SF (2014) Characterization of carbapenem-resistant Pseudomonas aeruginosa clinical isolates, carrying multiple genes coding for this antibiotic resistance. Ann Clin Microbiol Antimicrob 2(13):43. https://doi.org/10.1186/s12941-014-0043-3

    Article  CAS  Google Scholar 

  17. Montealegre MC, Correa A, Briceño DF, Rosas NC, De La Cadena E, Ruiz SJ, Mojica MF, Camargo RD, Zuluaga I, Marin A, Quinn JP, Villegas MV, Colombian Nosocomial Resistance Study Group (2011) Novel VIM metallo-beta-lactamase variant, VIM-24, from a Klebsiella pneumoniae isolate from Colombia. Antimicrob Agents Chemother 55(5):2428–30. https://doi.org/10.1128/AAC.01208-10

  18. Cayô R, Rodrigues-Costa F, Matos AP, Carvalhaes CG, Jové T, Gales AC (2015) Identification of a new integron harboring blaIMP-10 incarbapenem-resistant Acinetobacter baumannii clinical isolates. Antimicrob Agents Chemother 59(6):3687–9. https://doi.org/10.1128/AAC.04991-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iyobe S, Kusadokoro H, Takahashi A, Yomoda S, Okubo T, Nakamura A, O’Hara K (2002) Detection of a variant metallo-beta-lactamase, IMP-10, from two unrelated strains of Pseudomonas aeruginosa and an alcaligenes xylosoxidans strain. Antimicrob Agents Chemother 46(6):2014–6. https://doi.org/10.1128/AAC.46.6.2014-2016.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao WH, Chen G, Ito R, Hu ZQ (2009) Relevance of resistance levels to carbapenems and integron-borne blaIMP-1, blaIMP-7, blaIMP-10 and blaVIM-2 in clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 58(Pt 8):1080–1085. https://doi.org/10.1099/jmm.0.010017-0

    Article  CAS  PubMed  Google Scholar 

  21. Hong JS, Yoon E-J, Lee H, Jeong SH, Lee K (2016) Clonal dissemination of Pseudomonas aeruginosa sequence type 235 isolates carrying blaIMP-6 and emergence of blaGES-24 and blaIMP-10 on novel genomic islands PAGI-15 and -16 in South Korea. Antimicrob Agents Chemother. Antimicrob Agents Chemother 60(12):7216–7223. https://doi.org/10.1128/AAC.01601-16. Print 2016 Dec.

  22. Zavascki AP, Goldani LZ, Gonçalves AL, Martins AF, Barth AL (2007) High prevalence of metallo-beta lactamase-mediated resistance challenging antimicrobial therapy against Pseudomonas aeruginosa in a Brazilian teaching hospital. Epidemiol Infect 135(2):343–345. https://doi.org/10.1017/S0950268806006893

    Article  CAS  PubMed  Google Scholar 

  23. Khan A, Tran TT, Rios R, Hanson B, Shropshire WC, Sun Z, Diaz L, Dinh AQ, Wanger A, Ostrosky-Zeichner L, Palzkill T, Arias CA, Miller WR (2019) Extensively drug-resistant Pseudomonas aeruginosa ST309 harboring tandem guiana extended spectrum β-lactamase enzymes: a newly emerging threat in the United States. Open Forum Infect Dis 6(7):ofz273. https://doi.org/10.1093/ofid/ofz273. eCollection 2019 Jul.

  24. Vázquez-Ucha JC, Arca-Suárez J, Bou G, Beceiro A (2020) New carbapenemase inhibitors: clearing the way for the β-lactams. Int J Mol Sci 21(23):9308. https://doi.org/10.3390/ijms21239308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aguirre-Quiñonero A, Martínez-Martínez L (2017) Non-molecular detection of carbapenemases in Enterobacteriaceae clinical isolates. J Infect Chemother 23:1–11

    Article  PubMed  Google Scholar 

  26. Dortet L, Poirel L, Nordmann P (2012) Rapid identification of carbapenemase types in Enterobacteriaceae and Pseudomonas spp. by using a biochemicaltest. Antimicrob Agents Chemother 56(12):6437–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Literacka E, Herda M, Baraniak A, Zabicka D, Hryniewicz W, Skoczynska A, et al. (2017) Evaluation of the Carba NP test for carbapenemase detection in Enterobacteriaceae, Pseudomonas spp. and Acinetobacter spp., and its practical use in the routine work of a national reference laboratory for susceptibility testing. Eur J Clin Microbiol Infect Dis 36(11):2281–7

  28. Dortet L, Brechard L, Poirel L, Nordmann P (2014) Impact of the isolation medium for detection of carbapenemase-producing Enterobacteriaceae using an updated version of the Carba NP test. J Med Microbiol 63(Pt 5):772–776

    Article  PubMed  Google Scholar 

  29. Bouslah Z (2020) Carba NP test for the detection of carbapenemase-producing Pseudomonas aeruginosa. Med Mal Infect 50(6):466–479. https://doi.org/10.1016/j.medmal.2019.12.002

    Article  CAS  PubMed  Google Scholar 

  30. Osterblad M, Hakanen AJ, Jalava J (2014) Evaluation of the carba NP test for carbapenemase detection. Antimicrob Agents Chemother 58(12):7553–6. https://doi.org/10.1128/AAC.02761-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pancotto LR, Nodari CS, Rozales FP, Soldi T, Siqueira CG, Freitas AL, Barth AL (2018) Performance of rapid tests for carbapenemase detection among Brazilian Enterobacteriaceae isolates. Braz J Microbiol Oct-Dec 49(4):914–918. https://doi.org/10.1016/j.bjm.2018.07.002

    Article  CAS  Google Scholar 

  32. Simner PJ, Opene BNA, Chambers KK, Naumann ME, Carroll KC, Tamma PD (2017) Carbapenemase detection among carbapenem-resistant glucose-nonfermenting gram-negative Bacilli. J Clin Microbiol 55(9):2858–2864. https://doi.org/10.1128/JCM.00775-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gill CM, Lasko MJ, Asempa TE, Nicolau DP (2020) Evaluation of the EDTA modified carbapenem inactivation method for detecting metallo-β-lactamase-producing Pseudomonas aeruginosa. J Clin Microbiol 58(6):e02015-19. https://doi.org/10.1128/JCM.02015-19

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lambert RJ, Hanlon GW, Denyer SP (2004) The synergistic effect of EDTA/antimicrobial combinations on Pseudomonas aeruginosa. J Appl Microbiol 96:244–253

    Article  CAS  PubMed  Google Scholar 

  35. Vaara M (1992) Agents that increase the permeability of the outer membrane. Microbiol Rev 56:395–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lasko MJ, Gill CM, Asempa TE, Nicolau DP (2020) EDTA-modified carbapenem inactivation method (eCIM) for detecting IMP metallo-β-lactamase-producing Pseudomonas aeruginosa: an assessment of increasing EDTA concentrations. BMC Microbiol 20(1):220. https://doi.org/10.1186/s12866-020-01902-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the PDTIS-IOC DNA Sequencing Platform for DNA sequencing.

Funding

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Carlos Chagas de Amparo à Pesquisa (FAPERJ), and Instituto Oswaldo Cruz (IOC)—Fiocruz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Paula D’Alincourt Carvalho-Assef.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Luis Augusto Nero

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Santos, I.C., da Conceiçāo Neto, O.C., da Costa, B.S. et al. Evaluation of phenotypic detection of carbapenemase-producing Pseudomonas spp. from clinical isolates. Braz J Microbiol 54, 135–141 (2023). https://doi.org/10.1007/s42770-022-00857-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00857-4

Keywords

Navigation