Skip to main content
Log in

Evaluation of several phenotypic methods for the detection of carbapenemase-producing Pseudomonas aeruginosa

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The purpose of this investigation was to compare several phenotypic methods, including combined disk tests (CDT) containing metallo-β-lactamase (MBL) inhibitors or cloxacillin, and the Carba NP test for the detection of carbapenemase-producing Pseudomonas aeruginosa (CPPA). A new CDT using imipenem (10 μg) ± cloxacillin 4,000 μg and the Carba NP test were evaluated to detect CPPA. In addition, four commercially available combined disks containing a carbapenem and ethylene-diamine-tetra-acetic acid (EDTA) or dipicolinic acid (DPA) as the inhibitor were tested in order to detect MBL-positive P. aeruginosa. All these phenotypic methods were evaluated on 188 imipenem non-susceptible P. aeruginosa (CPPA, n = 75) isolates divided into 26 well-characterized collection strains and 162 non-duplicate clinical isolates referred to the national reference laboratory in 2013. For the total of 188 isolates tested, CDT containing EDTA or DPA displayed high sensitivities (99 %) and specificities (95 %) for detecting MBL-producing isolates. CDT with cloxacillin showed a sensitivity and specificity of 97 %/96 % compared to 88 %/99 % for the Carba NP test in order to detect CPPA. For the 162 clinical isolates, CDT containing EDTA or DPA displayed a high negative predictive value (NPV) (99 %) for detecting MBL-producing isolates. CDT with cloxacillin showed an NPV of 98 %, compared to 95 % for the Carba NP test in order to detect CPPA. In our setting, CDT associating imipenem ± EDTA or ± DPA performed best for the detection of MBL-producing P. aeruginosa. Imipenem/imipenem–cloxacillin test yielded good NPV to exclude the presence of MBL in imipenem non-susceptible isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mesaros N, Nordmann P, Plésiat P et al (2007) Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clin Microbiol Infect 13:560–578

    Article  CAS  PubMed  Google Scholar 

  2. Castanheira M, Deshpande LM, Costello A et al (2014) Epidemiology and carbapenem resistance mechanisms of carbapenem-non-susceptible Pseudomonas aeruginosa collected during 2009–11 in 14 European and Mediterranean countries. J Antimicrob Chemother 69:1804–1814. doi:10.1093/jac/dku048

    Article  CAS  PubMed  Google Scholar 

  3. Cornaglia G, Giamarellou H, Rossolini GM (2011) Metallo-beta-lactamases: a last frontier for beta-lactams? Lancet Infect Dis 11:381–393

    Article  CAS  PubMed  Google Scholar 

  4. Villegas MV, Lolans K, Correa A et al (2007) First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing beta-lactamase. Antimicrob Agents Chemother 51:1553–1555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Wang C, Cai P, Chang D et al (2006) A Pseudomonas aeruginosa isolate producing the GES-5 extended-spectrum beta-lactamase. J Antimicrob Chemother 57:1261–1262

    Article  CAS  PubMed  Google Scholar 

  6. El Garch F, Bogaerts P, Bebrone C et al (2011) OXA-198, an acquired carbapenem-hydrolyzing class D beta-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother 55:4828–4833

    Article  PubMed Central  PubMed  Google Scholar 

  7. Peter S, Lacher A, Marschal M et al (2014) Evaluation of phenotypic detection methods for metallo-β-lactamases (MBLs) in clinical isolates of Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 33:1133–1141. doi:10.1007/s10096-014-2059-1

    Article  CAS  PubMed  Google Scholar 

  8. Picão RC, Andrade SS, Nicoletti AG et al (2008) Metallo-beta-lactamase detection: comparative evaluation of double-disk synergy versus combined disk tests for IMP-, GIM-, SIM-, SPM-, or VIM-producing isolates. J Clin Microbiol 46:2028–2037

    Article  PubMed Central  PubMed  Google Scholar 

  9. Pasteran F, Veliz O, Faccone D et al (2011) A simple test for the detection of KPC and metallo-beta-lactamase carbapenemase-producing Pseudomonas aeruginosa isolates with the use of meropenem disks supplemented with aminophenylboronic acid, dipicolinic acid and cloxacillin. Clin Microbiol Infect 17:1438–1441

    Article  CAS  PubMed  Google Scholar 

  10. Dortet L, Poirel L, Nordmann P (2012) Rapid detection of carbapenemase-producing Pseudomonas spp. J Clin Microbiol 50:3773–3776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Huang TD, Berhin C, Bogaerts P et al (2014) Comparative evaluation of two chromogenic tests for rapid detection of carbapenemase in Enterobacteriaceae and in Pseudomonas aeruginosa isolates. J Clin Microbiol 52:3060–3063. doi:10.1128/JCM.00643-14

    Article  PubMed Central  PubMed  Google Scholar 

  12. Fournier D, Garnier P, Jeannot K et al (2013) A convenient method to screen for carbapenemase-producing Pseudomonas aeruginosa. J Clin Microbiol 51:3846–3848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Clinical and Laboratory Standards Institute (CLSI) (2013) Performance standards for antimicrobial susceptibility testing; Twenty-third informational supplement. CLSI document M100-S23. CLSI, Wayne

    Google Scholar 

  14. Bogaerts P, Rezende de Castro R, De Mendonça R et al (2013) Validation of carbapenemase and extended-spectrum beta-lactamase multiplex endpoint PCR assays according to ISO 15189. J Antimicrob Chemother 68:1576–1582

    Article  CAS  PubMed  Google Scholar 

  15. Bogaerts P, Naas T, El Garch F et al (2010) GES extended-spectrum beta-lactamases in Acinetobacter baumannii isolates in Belgium. Antimicrob Agents Chemother 54:4872–4878

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Rosco Diagnostica A/S (2013) Insert for total metallo-beta-lactamase confirm kit (98016). Rosco Diagnostica A/S, Taastrup, Denmark. Available online at: http://www.rosco.dk/gfx/print%20insert%2098016.pdf. Accessed 11 September 2014

Download references

Acknowledgments

We thank our microbiologist colleagues for referring isolates to the national reference center and to Jose Bou Casals from Rosco Diagnostica for providing the meropenem ± DPA tablets. This study was supported in part by a research grant from the Fondation Mont-Godinne. The national reference center is partially supported by the Belgian Ministry of Social Affairs through a fund within the health insurance system.

Compliance with ethical standards

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Heinrichs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinrichs, A., Huang, T.D., Berhin, C. et al. Evaluation of several phenotypic methods for the detection of carbapenemase-producing Pseudomonas aeruginosa . Eur J Clin Microbiol Infect Dis 34, 1467–1474 (2015). https://doi.org/10.1007/s10096-015-2376-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-015-2376-z

Keywords

Navigation