Skip to main content

Advertisement

Log in

Mass spectrometry in research laboratories and clinical diagnostic: a new era in medical mycology

  • Clinical Microbiology - Review
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Diagnosis by clinical mycology laboratory plays a critical role in patient care by providing definitive knowledge of the cause of infection and antimicrobial susceptibility data to physicians. Rapid diagnostic methods are likely to improve patient. Aggressive resuscitation bundles, adequate source control, and appropriate antibiotic therapy are cornerstones for success in the treatment of patients. Routine methods for identifying clinical specimen fungal pathogen are based on the cultivation on different media with the subsequent examination of its phenotypic characteristics comprising a combination of microscopic and colony morphologies. As some fungi cannot be readily identified using these methods, molecular diagnostic methods may be required. These methods are fast, but it can cost a lot. Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is suitable for high-throughput and rapid diagnostics at low costs. It can be considered an alternative for conventional biochemical and molecular identification systems in a microbiological laboratory. The reliability and accuracy of this method have been scrutinized in many surveys and have been compared with several methods including sequencing and molecular methods. According to these findings, the reliability and accuracy of this method are very high and can be trusted. With all the benefits of this technique, the libraries of MALDI-TOF MS need to be strengthened to enhance its performance. This review provides an overview of the most recent research literature that has investigated the applications and usage of MT-MS to the identification of microorganisms, mycotoxins, antifungal susceptibility examination, and mycobiome research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Paramythiotou E, Frantzeskaki F, Flevari A, Armaganidis A, Dimopoulos G (2014) Invasive fungal infections in the ICU: how to approach, how to treat. Molecules 19(1):1085–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Santos T, Aguiar B, Santos L, Romaozinho C, Tome R, Macario F, Alves R, Campos M, Mota A Invasive fungal infections after kidney transplantation: a single-center experience. In: Transplantation proceedings, 2015. vol 4. Elsevier, pp 971–975

  3. Rizzato C, Lombardi L, Zoppo M, Lupetti A, Tavanti A (2015) Pushing the limits of MALDI-TOF mass spectrometry: beyond fungal species identification. J Fungi 1(3):367–383

    Article  Google Scholar 

  4. Croxatto A, Prod’hom G, Greub G (2012) Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev 36(2):380–407

    Article  CAS  PubMed  Google Scholar 

  5. Vyzantiadis T-AA, Johnson EM, Kibbler CC (2012) From the patient to the clinical mycology laboratory: how can we optimise microscopy and culture methods for mould identification? J Clin Pathol 65(6):475–483

    Article  PubMed  Google Scholar 

  6. Arunmozhi Balajee S, Sigler L, Brandt ME (2007) DNA and the classical way: identification of medically important molds in the 21st century. Med Mycol 45(6):475–490

    Article  PubMed  CAS  Google Scholar 

  7. Ciardo DE, Lucke K, Imhof A, Bloemberg GV, Böttger EC (2010) Systematic internal transcribed spacer sequence analysis for identification of clinical mold isolates in diagnostic mycology: a 5-year study. J Clin Microbiol 48(8):2809–2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Amiri-Eliasi B, Fenselau C (2001) Characterization of protein biomarkers desorbed by MALDI from whole fungal cells. Anal Chem 73(21):5228–5231

    Article  CAS  PubMed  Google Scholar 

  9. Chen JH, Yam W-C, Ngan AH, Fung AM, Woo W-L, Yan M-K, Choi GK, Ho P-L, Cheng VC, Yuen K-Y (2013) Advantages of using matrix-assisted laser desorption ionization–time of flight mass spectrometry as a rapid diagnostic tool for identification of yeasts and mycobacteria in the clinical microbiological laboratory. J Clin Microbiol 51(12):3981–3987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Bader O (2013) MALDI-TOF-MS-based species identification and typing approaches in medical mycology. Proteomics 13(5):788–799

    Article  CAS  PubMed  Google Scholar 

  11. De Carolis E, Vella A, Vaccaro L, Torelli R, Spanu T, Fiori B, Posteraro B, Sanguinetti M (2014) Application of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. J Infect Develop Countries 8(09):1081–1088

    Article  Google Scholar 

  12. Nomura F (2015) Proteome-based bacterial identification using matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS): a revolutionary shift in clinical diagnostic microbiology. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1854 (6):528–537

  13. Brandt ME, Lockhart SR (2012) Recent taxonomic developments with Candida and other opportunistic yeasts. Curr Fungal Infect Rep 6(3):170–177

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pinto A, Halliday C, Zahra M, van Hal S, Olma T, Maszewska K, Iredell JR, Meyer W, Chen SC-A (2011) Matrix-assisted laser desorption ionization-time of flight mass spectrometry identification of yeasts is contingent on robust reference spectra. PloS one 6 (10):e25712

  15. Hedayati MT, Ansari S, Ahmadi B, Armaki MT, Shokohi T, Abastabar M, Er H, Özhak B, Öğünç D, Ilkit M (2019) Identification of clinical dermatophyte isolates obtained from Iran by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Curr Med Mycol 5(2):22

    PubMed  PubMed Central  Google Scholar 

  16. Hedayati MT, Taghizadeh-Armaki M, Zarrinfar H, Hoseinnejad A, Ansari S, Abastabar M, Er H, Özhak B, Öğünç D, Ilkit M (2019) Discrimination of Aspergillus flavus from Aspergillus oryzae by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry. Mycoses 62(12):1182–1188

    Article  CAS  PubMed  Google Scholar 

  17. Wilkendorf LS, Bowles E, Buil JB, van der Lee HA, Posteraro B, Sanguinetti M, Verweij PE (2020) Update on matrix-assisted laser desorption ionization–time of flight mass spectrometry identification of filamentous fungi. J Clin Microbiol 58 (12)

  18. Hettick JM, Green BJ, Buskirk AD, Slaven JE, Kashon ML, Beezhold DH (2011) Discrimination of fungi by MALDI-TOF mass spectrometry. In: Rapid characterization of microorganisms by mass spectrometry, vol 1065. ACS Symposium Series, vol 1065. Am Chem Soc pp 35–50. https://doi.org/10.1021/bk-2011-1065.ch00310.1021/bk-2011-1065.ch003

  19. Buskirk AD, Hettick JM, Chipinda I, Law BF, Siegel PD, Slaven JE, Green BJ, Beezhold DH (2011) Fungal pigments inhibit the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of darkly pigmented fungi. Anal Biochem 411(1):122–128. https://doi.org/10.1016/j.ab.2010.11.025

    Article  CAS  PubMed  Google Scholar 

  20. De Carolis E, Posteraro B, Lass-Flörl C, Vella A, Florio A, Torelli R, Girmenia C, Colozza C, Tortorano A, Sanguinetti M (2012) Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect 18(5):475–484

    Article  PubMed  Google Scholar 

  21. Bille E, Dauphin B, Leto J, Bougnoux ME, Beretti JL, Lotz A, Suarez S, Meyer J, Join-Lambert O, Descamps P, Grall N, Mory F, Dubreuil L, Berche P, Nassif X, Ferroni A (2012) MALDI-TOF MS Andromas strategy for the routine identification of bacteria, mycobacteria, yeasts, Aspergillus spp. and positive blood cultures. Clin Microbiol Infect 18 (11):1117–1125. https://doi.org/10.1111/j.1469-0691.2011.03688.x

  22. Iriart X, Lavergne RA, Fillaux J, Valentin A, Magnaval JF, Berry A, Cassaing S (2012) Routine identification of medical fungi by the new Vitek MS matrix-assisted laser desorption ionization-time of flight system with a new time-effective strategy. J Clin Microbiol 50(6):2107–2110. https://doi.org/10.1128/jcm.06713-11

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lau AF, Drake SK, Calhoun LB, Henderson CM, Zelazny AM (2013) Development of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 51(3):828–834. https://doi.org/10.1128/jcm.02852-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ranque S, Normand AC, Cassagne C, Murat JB, Bourgeois N, Dalle F, Gari-Toussaint M, Fourquet P, Hendrickx M, Piarroux R (2014) MALDI-TOF mass spectrometry identification of filamentous fungi in the clinical laboratory. Mycoses 57(3):135–140. https://doi.org/10.1111/myc.12115

    Article  CAS  PubMed  Google Scholar 

  25. Tam EW, Chen JH, Lau EC, Ngan AH, Fung KS, Lee K-C, Lam C-W, Yuen K-Y, Lau SK, Woo PC (2014) Misidentification of Aspergillus nomius and Aspergillus tamarii as Aspergillus flavus: characterization by internal transcribed spacer, β-tubulin, and calmodulin gene sequencing, metabolic fingerprinting, and matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Clin Microbiol 52(4):1153–1160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lopes RB, Faria M, Souza DA, Bloch C Jr, Silva LP, Humber RA (2014) MALDI-TOF mass spectrometry applied to identifying species of insect-pathogenic fungi from the Metarhizium anisopliae complex. Mycologia 106(4):865–878. https://doi.org/10.3852/13-401

    Article  CAS  PubMed  Google Scholar 

  27. Panda A, Kurapati S, Samantaray JC, Srinivasan A, Khalil S (2014) MALDI-TOF mass spectrometry proteomic based identification of clinical bacterial isolates. Indian J Med Res 140(6):770–777

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kondori N, Erhard M, Welinder-Olsson C, Groenewald M, Verkley G, Moore ER (2015) Analyses of black fungi by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS): species-level identification of clinical isolates of Exophiala dermatitidis. FEMS Microbiol Lett 362(1):1–6

    Article  CAS  PubMed  Google Scholar 

  29. Gruenwald M, Rabenstein A, Remesch M, Kuever J (2015) MALDI-TOF mass spectrometry fingerprinting: a diagnostic tool to differentiate dematiaceous fungi Stachybotrys chartarum and Stachybotrys chlorohalonata. J Microbiol Methods 115:83–88. https://doi.org/10.1016/j.mimet.2015.05.025

    Article  CAS  PubMed  Google Scholar 

  30. Masih A, Singh PK, Kathuria S, Agarwal K, Meis JF, Chowdhary A (2016) Identification by molecular methods and matrix-assisted laser desorption ionization–time of flight mass spectrometry and antifungal susceptibility profiles of clinically significant rare Aspergillus species in a referral chest hospital in Delhi. India J Clin Microbiol 54(9):2354–2364

    Article  PubMed  Google Scholar 

  31. McMullen AR, Wallace MA, Pincus DH, Wilkey K, Burnham CA (2016) Evaluation of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of clinically relevant filamentous fungi. J Clin Microbiol 54(8):2068–2073. https://doi.org/10.1128/jcm.00825-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sleiman S, Halliday CL, Chapman B, Brown M, Nitschke J, Lau AF, Chen SC-A (2016) Performance of matrix-assisted laser desorption ionization− time of flight mass spectrometry for identification of Aspergillus, Scedosporium, and Fusarium spp. in the Australian clinical setting. J Clin Microbiol 54 (8):2182–2186

  33. Atalay A, Koc AN, Suel A, Sav H, Demir G, Elmali F, Cakir N, Seyedmousavi S (2016) Conventional morphology versus PCR sequencing, rep-PCR, and MALDI-TOF-MS for identification of clinical Aspergillus isolates collected over a 2-year period in a University Hospital at Kayseri. Turkey J Clin Lab Anal 30(5):745–750. https://doi.org/10.1002/jcla.21932

    Article  CAS  PubMed  Google Scholar 

  34. Borman AM, Fraser M, Szekely A, Larcombe DE, Johnson EM (2017) Rapid identification of clinically relevant members of the genus Exophiala by matrix-assisted laser desorption ionization-time of flight mass spectrometry and description of two novel species, Exophiala campbellii and Exophiala lavatrina. J Clin Microbiol 55(4):1162–1176. https://doi.org/10.1128/jcm.02459-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Singh A, Singh PK, Kumar A, Chander J, Khanna G, Roy P, Meis JF, Chowdhary A (2017) Molecular and matrix-assisted laser desorption ionization–time of flight mass spectrometry-based characterization of clinically significant melanized fungi in India. J Clin Microbiol 55(4):1090–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang Y, Zhang M, Zhu M, Wang M, Sun Y, Gu H, Cao J, Li X, Zhang S, Wang J, Lu X (2017) Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for the identification of clinical filamentous fungi. World J Microbiol Biotechnol 33(7):142. https://doi.org/10.1007/s11274-017-2297-3

    Article  CAS  PubMed  Google Scholar 

  37. Park JH, Shin JH, Choi MJ, Choi JU, Park YJ, Jang SJ, Won EJ, Kim SH, Kee SJ, Shin MG, Suh SP (2017) Evaluation of matrix-assisted laser desorption/ionization time-of-fight mass spectrometry for identification of 345 clinical isolates of Aspergillus species from 11 Korean hospitals: comparison with molecular identification. Diagn Microbiol Infect Dis 87(1):28–31. https://doi.org/10.1016/j.diagmicrobio.2016.10.012

    Article  CAS  PubMed  Google Scholar 

  38. Fraser M, Borman AM, Johnson EM (2017) Rapid and robust identification of the agents of black-grain mycetoma by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 55(8):2521–2528. https://doi.org/10.1128/jcm.00417-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Normand A-C, Cassagne C, Gautier M, Becker P, Ranque S, Hendrickx M, Piarroux R (2017) Decision criteria for MALDI-TOF MS-based identification of filamentous fungi using commercial and in-house reference databases. BMC Microbiol 17(1):25

    Article  PubMed  PubMed Central  Google Scholar 

  40. Valero C, Buitrago MJ, Gago S, Quiles-Melero I, García-Rodríguez J (2018) A matrix-assisted laser desorption/ionization time of flight mass spectrometry reference database for the identification of Histoplasma capsulatum. Med Mycol 56(3):307–314. https://doi.org/10.1093/mmy/myx047

    Article  CAS  PubMed  Google Scholar 

  41. Shao J, Wan Z, Li R, Yu J (2018) Species identification and delineation of pathogenic Mucorales by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Clin Microbiol 56 (4)

  42. Rychert J, Slechta ES, Barker AP, Miranda E, Babady NE, Tang YW, Gibas C, Wiederhold N, Sutton D, Hanson KE (2018) Multicenter evaluation of the Vitek MS v3.0 System for the identification of filamentous fungi. J Clin Microbiol 56 (2). https://doi.org/10.1128/jcm.01353-17

  43. Ma F, Pms L, Bdn GM, Mfg V, St MR, Lm A, Santos de Freitas R, Rossi F, A LC, Benard G, J NdAJ, (2020) Evaluating VITEK MS for the identification of clinically relevant Aspergillus species. Med Mycol 58(3):322–327. https://doi.org/10.1093/mmy/myz066

    Article  CAS  Google Scholar 

  44. Reeve MA, Bachmann D, Caine TS (2019) Identification of Penicillium species by MALDI-TOF MS analysis of spores collected by dielectrophoresis. Biology Methods and Protocols 4 (1):bpz018

  45. Peng Y, Zhang Q, Xu C, Shi W (2019) MALDI-TOF MS for the rapid identification and drug susceptibility testing of filamentous fungi. Exp Ther Med 18(6):4865–4873

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sacheli R, Henri AS, Seidel L, Ernst M, Darfouf R, Adjetey C, Schyns M, Marechal L, Meex C, Arrese J (2020) Evaluation of the new Id-fungi plates from Conidia for MALDI-TOF MS identification of filamentous fungi and comparison with conventional methods as identification tool for dermatophytes from nails, hair and skin samples. Mycoses 63(10):1115–1127

    Article  CAS  PubMed  Google Scholar 

  47. Robert MG, Romero C, Dard C, Garnaud C, Cognet O, Girard T, Rasamoelina T, Cornet M, Maubon D (2020) Evaluation of ID fungi plates medium for identification of molds by MALDI Biotyper. J Clin Microbiol 58 (5)

  48. Gómez-Velásquez JC, Loaiza-Díaz N, Norela Hernández G, Lima N, Mesa-Arango AC (2020) Development and validation of an in-house library for filamentous fungi identification by MALDI-TOF MS in a clinical laboratory in Medellin (Colombia). Microorganisms 8(9):1362

    Article  PubMed Central  CAS  Google Scholar 

  49. Martin EC, Renaux C, Catherinot E, Limousin L, Couderc LJ, Vasse M (2020) Rapid identification of fungi from respiratory samples by Bruker Biotyper matrix–assisted laser desorption/ionisation time-of-flight using ID-fungi plates. Eur J Clin Microbiol Infect Dis:1–5

  50. Lee H, Oh J, Sung G-H, Koo J, Lee M-H, Lee HJ, Cho S-I, Choi JS, Park Y-J, Shin JH (2020) Multilaboratory evaluation of the MALDI-TOF mass spectrometry system, MicroIDSys Elite, for the identification of medically important filamentous fungi. Mycopathologia:1–12

  51. Erhard M, Hipler UC, Burmester A, Brakhage AA, Wöstemeyer J (2008) Identification of dermatophyte species causing onychomycosis and tinea pedis by MALDI-TOF mass spectrometry. Exp Dermatol 17(4):356–361

    Article  PubMed  Google Scholar 

  52. Theel ES, Hall L, Mandrekar J, Wengenack NL (2011) Dermatophyte identification using matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Clin Microbiol 49(12):4067–4071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Alshawa K, Beretti J-L, Lacroix C, Feuilhade M, Dauphin B, Quesne G, Hassouni N, Nassif X, Bougnoux M-E (2012) Successful identification of clinical dermatophyte and Neoscytalidium species by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Clin Microbiol 50(7):2277–2281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. De Respinis S, Tonolla M, Pranghofer S, Petrini L, Petrini O, Bosshard PP (2013) Identification of dermatophytes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Med Mycol 51(5):514–521

    Article  PubMed  CAS  Google Scholar 

  55. L’Ollivier C, Cassagne C, Normand A-C, Bouchara J-P, Contet-Audonneau N, Hendrickx M, Fourquet P, Coulibaly O, Piarroux R, Ranque S (2013) A MALDI-TOF MS procedure for clinical dermatophyte species identification in the routine laboratory. Med Mycol 51(7):713–720

    Article  PubMed  CAS  Google Scholar 

  56. Nenoff P, Erhard M, Simon JC, Muylowa GK, Herrmann J, Rataj W, Gräser Y (2013) MALDI-TOF mass spectrometry–a rapid method for the identification of dermatophyte species. Med Mycol 51(1):17–24

    Article  CAS  PubMed  Google Scholar 

  57. Packeu A, De Bel A, l’Ollivier C, Ranque S, Detandt M, Hendrickx M, (2014) Fast and accurate identification of dermatophytes by matrix-assisted laser desorption ionization–time of flight mass spectrometry: validation in the clinical laboratory. J Clin Microbiol 52(9):3440–3443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. De Respinis S, Monnin V, Girard V, Welker M, Arsac M, Cellière B, Durand G, Bosshard PP, Farina C, Passera M (2014) Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry using the Vitek MS system for rapid and accurate identification of dermatophytes on solid cultures. J Clin Microbiol 52(12):4286–4292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Calderaro A, Motta F, Montecchini S, Gorrini C, Piccolo G, Piergianni M, Buttrini M, Medici M, Arcangeletti M, Chezzi C (2014) Identification of dermatophyte species after implementation of the in-house MALDI-TOF MS database. Int J Mol Sci 15(9):16012–16024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Karabıçak N, Karatuna O, İlkit M, Akyar I (2015) Evaluation of the Bruker matrix-assisted laser desorption–ionization time-of-flight mass spectrometry (MALDI-TOF MS) system for the identification of clinically important dermatophyte species. Mycopathologia 180(3–4):165–171

    Article  PubMed  CAS  Google Scholar 

  61. Gnat S, Łagowski D, Nowakiewicz A, Dyląg M, Osińska M, Sawicki M (2020) Detection and identification of dermatophytes based on currently available methods–a comparative study. J Appl Microbiol

  62. Shao J, Wan Z, Li R, Yu J (2020) Species identification of dermatophytes isolated in China by matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry. Mycoses 63(12):1352–1361

    Article  CAS  PubMed  Google Scholar 

  63. Mancini N, De Carolis E, Infurnari L, Vella A, Clementi N, Vaccaro L, Ruggeri A, Posteraro B, Burioni R, Clementi M, Sanguinetti M (2013) Comparative evaluation of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry systems for identification of yeasts of medical importance. J Clin Microbiol 51(7):2453–2457. https://doi.org/10.1128/jcm.00841-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lohmann C, Sabou M, Moussaoui W, Prévost G, Delarbre J-M, Candolfi E, Gravet A, Letscher-Bru V (2013) Comparison between the Biflex III-Biotyper and the Axima-SARAMIS systems for yeast identification by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Clin Microbiol 51(4):1231–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pence MA, McElvania TeKippe E, Wallace MA, Burnham CA (2014) Comparison and optimization of two MALDI-TOF MS platforms for the identification of medically relevant yeast species. Eur J Clin Microbiol Infect Dis 33(10):1703–1712. https://doi.org/10.1007/s10096-014-2115-x

    Article  CAS  PubMed  Google Scholar 

  66. Taj-Aldeen SJ, Kolecka A, Boesten R, Alolaqi A, Almaslamani M, Chandra P, Meis JF, Boekhout T (2014) Epidemiology of candidemia in Qatar, the Middle East: performance of MALDI-TOF MS for the identification of Candida species, species distribution, outcome, and susceptibility pattern. Infection 42(2):393–404. https://doi.org/10.1007/s15010-013-0570-4

    Article  CAS  PubMed  Google Scholar 

  67. Kathuria S, Singh PK, Sharma C, Prakash A, Masih A, Kumar A, Meis JF, Chowdhary A (2015) Multidrug-resistant Candida auris misidentified as Candida haemulonii: characterization by matrix-assisted laser desorption ionization–time of flight mass spectrometry and DNA sequencing and its antifungal susceptibility profile variability by Vitek 2, CLSI broth microdilution, and Etest method. J Clin Microbiol 53(6):1823–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vatanshenassan M, Arastehfar A, Boekhout T, Berman J, Lass-Flörl C, Sparbier K, Kostrzewa M (2019) Anidulafungin susceptibility testing of Candida glabrata isolates from blood cultures by the MALDI Biotyper antibiotic (antifungal) susceptibility test rapid assay. Antimicrob Agents Chemother 63 (9). https://doi.org/10.1128/aac.00554-19

  69. Ceballos-Garzon A, Amado D, Vélez N, Jiménez-A MJ, Rodríguez C, Parra-Giraldo CM (2020) Development and validation of an in-house library of Colombian Candida auris strains with MALDI-TOF MS to improve yeast identification. J Fungi 6(2):72

    Article  CAS  Google Scholar 

  70. Noni M, Stathi A, Velegraki A, Malamati M, Kalampaliki A, Zachariadou L, Michos A (2020) Rare invasive yeast infections in Greek neonates and Children, a retrospective 12-year study. J Fungi 6(4):194

    Article  CAS  Google Scholar 

  71. Zvezdanova ME, Arroyo MJ, Méndez G, Guinea J, Mancera L, Muñoz P, Rodríguez-Sánchez B, Escribano P (2020) Implementation of MALDI-TOF mass spectrometry and peak analysis: application to the discrimination of Cryptococcus neoformans species complex and their interspecies hybrids. J Fungi 6(4):330

    Article  CAS  Google Scholar 

  72. Guo D, Yue H, Wei Y, Huang G (2017) Genetic regulatory mechanisms of Candida albicans biofilm formation. Sheng wu gong cheng xue bao= Chin J Biotechnol 33 (9):1567–1581

  73. Wille MP, Guimarães T, Furtado GHC, Colombo AL (2013) Historical trends in the epidemiology of candidaemia: analysis of an 11-year period in a tertiary care hospital in Brazil. Mem Inst Oswaldo Cruz 108(3):288–292

    Article  PubMed Central  Google Scholar 

  74. Yan Y, He Y, Maier T, Quinn C, Shi G, Li H, Stratton CW, Kostrzewa M, Tang Y-W (2011) Improved identification of yeast species directly from positive blood culture media by combining Sepsityper specimen processing and Microflex analysis with the matrix-assisted laser desorption ionization Biotyper system. J Clin Microbiol 49(7):2528–2532

    Article  PubMed  PubMed Central  Google Scholar 

  75. Angeletti S, Presti AL, Cella E, Dicuonzo G, Crea F, Palazzotti B, Dedej E, Ciccozzi M, De Florio L (2015) Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) and Bayesian phylogenetic analysis to characterize Candida clinical isolates. J Microbiol Methods 119:214–222

    Article  CAS  PubMed  Google Scholar 

  76. Sendid B, Ducoroy P, François N, Lucchi G, Spinali S, Vagner O, Damiens S, Bonnin A, Poulain D, Dalle F (2013) Evaluation of MALDI-TOF mass spectrometry for the identification of medically-important yeasts in the clinical laboratories of Dijon and Lille hospitals. Med Mycol 51(1):25–32

    Article  CAS  PubMed  Google Scholar 

  77. Ghosh AK, Paul S, Sood P, Rudramurthy SM, Rajbanshi A, Jillwin T, Chakrabarti A (2015) Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the rapid identification of yeasts causing bloodstream infections. Clin Microbiol Infect 21(4):372–378

    Article  CAS  PubMed  Google Scholar 

  78. Lee H, Park JH, Oh J, Cho S, Koo J, Park IC, Kim J, Park S, Choi JS, Shin SY (2018) Evaluation of a new matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry system for the identification of yeast isolation. J Clin Lab Anals:e22685

  79. Lee H-S, Shin JH, Choi MJ, Won EJ, Kee SJ, Kim SH, Shin M-G, Suh S-P (2017) Comparison of the Bruker Biotyper and VITEK MS matrix-assisted laser desorption/ionization time-of-flight mass spectrometry systems using a formic acid extraction method to identify common and uncommon yeast isolates. Ann Lab Med 37(3):223–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Aslani N, Janbabaei G, Abastabar M, Meis JF, Babaeian M, Khodavaisy S, Boekhout T, Badali H (2018) Identification of uncommon oral yeasts from cancer patients by MALDI-TOF mass spectrometry. BMC Infect Dis 18(1):24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Lee Y, Sung JY, Kim H, Yong D, Lee K (2017) Comparison of a new matrix-assisted laser desorption/ionization time-of-flight mass spectrometry platform, ASTA MicroIDSys, with Bruker Biotyper for species identification. Ann Lab Med 37(6):531–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Roberts AL, Alelew A, Iwen PC (2016) Evaluation of matrix-assisted laser desorption ionization–time-of-flight mass spectrometry to differentiate between Candida albicans and Candida dubliniensis. Diagn Microbiol Infect Dis 85(1):73–76

    Article  CAS  PubMed  Google Scholar 

  83. Sendid B, Poissy J, François N, Mery A, Courtecuisse S, Krzewinski F, Jawhara S, Guerardel Y, Poulain D (2015) Preliminary evidence for a serum disaccharide signature of invasive Candida albicans infection detected by MALDI mass spectrometry. Clin Microbiol Infect 21 (1):88. e81–88. e86

  84. Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J (2012) Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev 36(2):288–305

    Article  CAS  PubMed  Google Scholar 

  85. Ho H-l, Haynes K (2015) Candida glabrata: new tools and technologies—expanding the toolkit. FEMS yeast research 15 (6):fov066

  86. Dhieb C, Normand A, Al-Yasiri M, Chaker E, El Euch D, Vranckx K, Hendrickx M, Sadfi N, Piarroux R, Ranque S (2015) MALDI-TOF typing highlights geographical and fluconazole resistance clusters in Candida glabrata. Med Mycol 53(5):462–469

    Article  CAS  PubMed  Google Scholar 

  87. Pulcrano G, Iula DV, Vollaro A, Tucci A, Cerullo M, Esposito M, Rossano F, Catania MR (2013) Rapid and reliable MALDI-TOF mass spectrometry identification of Candida non-albicans isolates from bloodstream infections. J Microbiol Methods 94(3):262–266

    Article  CAS  PubMed  Google Scholar 

  88. Maldonado I, Cataldi S, Garbasz C, Relloso S, Striebeck P, Guelfand L, López LM (2018) Identification of Candida yeasts: conventional methods and MALDI-TOF MS. Revista iberoamericana de micologia 35(3):151–154

    Article  PubMed  Google Scholar 

  89. Gorton RL, Jones GL, Kibbler CC, Collier S (2013) Candida nivariensis isolated from a renal transplant patient with persistent candiduria—molecular identification using ITS PCR and MALDI-TOF. Med Mycol Case Reports 2:156–158

    Article  Google Scholar 

  90. Wang H, Li Y, Fan X, Chiueh T-S, Xu Y-C, Hsueh P-R (2017) Evaluation of Bruker Biotyper and Vitek MS for the identification of Candida tropicalis on different solid culture media. J Microbiol Immunol Infect

  91. Sow D, Fall B, Ndiaye M, Ba BS, Sylla K, Tine R, Lo AC, Abiola A, Wade B, Dieng T (2015) Usefulness of MALDI-TOF mass spectrometry for routine identification of Candida species in a resource-poor setting. Mycopathologia 180(3–4):173–179

    Article  CAS  PubMed  Google Scholar 

  92. Döğen A, Sav H, Gonca S, Kaplan E, Ilkit M, Novak Babič M, Gunde-Cimerman N, de Hoog GS (2017) Candida parapsilosis in domestic laundry machines. Med Mycol 55(8):813–819

    Article  PubMed  CAS  Google Scholar 

  93. Quiles-Melero I, Garcia-Rodriguez J, Gómez-López A, Mingorance J (2012) Evaluation of matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry for identification of Candida parapsilosis, C. orthopsilosis and C. metapsilosis. Eur J Clin Microbiol Infect Dis 31 (1):67–71

  94. de Almeida Junior JN, de Souza LB, Motta AL, Rossi F, Di Gioia TSR, Benard G, Del Negro GMB (2014) Evaluation of the MALDI-TOF VITEK MS™ system for the identification of Candida parapsilosis, C. orthopsilosis and C. metapsilosis from bloodstream infections. J Microbiol Methods 105:105–108

    Article  CAS  Google Scholar 

  95. Mlynáriková K, Šedo O, Růžička F, Zdráhal Z, Holá V, Mahelová M (2016) Evaluation of capacity to detect ability to form biofilm in Candida parapsilosis sensu stricto strains by MALDI-TOF MS. Folia Microbiol 61(6):465–471

    Article  CAS  Google Scholar 

  96. Chao Q-T, Lee T-F, Teng S-H, Peng L-Y, Chen P-H, Teng L-J, Hsueh P-R (2014) Comparison of the accuracy of two conventional phenotypic methods and two MALDI-TOF MS systems with that of DNA sequencing analysis for correctly identifying clinically encountered yeasts. PloS one 9 (10):e109376

  97. Navalkele BD, Revankar S, Chandrasekar P (2017) Candida auris: a worrisome, globally emerging pathogen. Expert Rev Anti Infect Ther 15(9):819–827

    Article  CAS  PubMed  Google Scholar 

  98. Lu P-L, Liu W-L, Lo H-J, Wang F-D, Ko W-C, Hsueh P-R, Ho M-W, Liu C-E, Chen Y-H, Chen Y-C (2018) Are we ready for the global emergence of multidrug-resistant Candida auris in Taiwan? J Formos Med Assoc 117(6):462–470

    Article  PubMed  Google Scholar 

  99. Prakash A, Sharma C, Singh A, Singh PK, Kumar A, Hagen F, Govender N, Colombo A, Meis J, Chowdhary A (2016) Evidence of genotypic diversity among Candida auris isolates by multilocus sequence typing, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and amplified fragment length polymorphism. Clin Microbiol Infect 22 (3):277. e271–277. e279

  100. Sterkel A, Bateman A, Valley A, Warshauer D (2018) Viability of Candida auris and other Candida species after various matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry-based extraction protocols. J Clin Microbiol 56 (9)

  101. dos Santos CO, Zijlstra JG, Porte RJ, Kampinga GA, van Diepeningen AD, Sinha B, Bathoorn E (2016) Emerging pan-resistance in Trichosporon species: a case report. BMC Infect Dis 16(1):148

    Article  CAS  Google Scholar 

  102. de Almeida JN, Gimenes VMF, Francisco EC, Siqueira LPM, de Almeida RKG, Guitard J, Hennequin C, Colombo AL, Benard G, Rossi F (2017) Evaluating and improving Vitek MS for identification of clinically relevant species of Trichosporon and the closely related genera Cutaneotrichosporon and Apiotrichum. J Clin Microbiol 55(8):2439–2444

    Article  PubMed  PubMed Central  Google Scholar 

  103. de Almeida JN, Sztajnbok J, da Silva AR, Vieira VA, Galastri AL, Bissoli L, Litvinov N, Del Negro GMB, Motta AL, Rossi F (2016) Rapid identification of moulds and arthroconidial yeasts from positive blood cultures by MALDI-TOF mass spectrometry. Sabouraudia 54(8):885–889

    Article  CAS  Google Scholar 

  104. Miglietta F, Vella A, Faneschi M, Lobreglio G, Rizzo A, Palumbo C, Di NR, Pizzolante M (2015) Geotrichum capitatum septicaemia in a haematological patient after acute myeloid leukaemia relapse: identification using MALDI-TOF mass spectrometry and review of the literature. Le infezioni in medicina: rivista periodica di eziologia, epidemiologia, diagnostica, clinica e terapia delle patologie infettive 23(2):161–167

    Google Scholar 

  105. Westblade LF, Jennemann R, Branda JA, Bythrow M, Ferraro MJ, Garner OB, Ginocchio CC, Lewinski MA, Manji R, Mochon AB (2013) Multicenter study evaluating the Vitek MS system for identification of medically important yeasts. J Clin Microbiol 51(7):2267–2272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Marklein G, Josten M, Klanke U, Müller E, Horre R, Maier T, Wenzel T, Kostrzewa M, Bierbaum G, Hoerauf A (2009) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J Clin Microbiol 47(9):2912–2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kolecka A, Khayhan K, Groenewald M, Theelen B, Arabatzis M, Velegraki A, Kostrzewa M, Mares M, Taj-Aldeen SJ, Boekhout T (2013) Identification of medically relevant species of arthroconidial yeasts by use of matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Clin Microbiol 51(8):2491–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kwon-Chung KJ, Fraser JA, Doering TL, Wang ZA, Janbon G, Idnurm A, Bahn Y-S (2014) Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harbor Perspect Med 4 (7):a019760

  109. Tarumoto N, Sakai J, Kodana M, Kawamura T, Ohno H, Maesaki S (2016) Identification of disseminated cryptococcosis using MALDI-TOF MS and clinical evaluation. Med Mycol J 57(3):E41–E46

    Article  CAS  PubMed  Google Scholar 

  110. Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, Falk R, Parnmen S, Lumbsch HT, Boekhout T (2015) Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol 78:16–48

    Article  CAS  PubMed  Google Scholar 

  111. Danesi P, Drigo I, Iatta R, Firacative C, Capelli G, Cafarchia C, Meyer W (2014) MALDI-TOF MS for the identification of veterinary non-C. neoformans–C. gattii Cryptococcus spp. isolates from Italy. Sabouraudia 52 (6):659–666

  112. Thomaz DY, Grenfell RC, Vidal MS, Giudice MC, Del Negro GM, Juliano L, Benard G, de Almeida Júnior JN (2016) Does the capsule interfere with performance of matrix-assisted laser desorption ionization–time of flight mass spectrometry for identification of Cryptococcus neoformans and Cryptococcus gattii? J Clin Microbiol 54(2):474–477

    Article  PubMed  PubMed Central  Google Scholar 

  113. McTaggart LR, Lei E, Richardson SE, Hoang L, Fothergill A, Zhang SX (2011) Rapid identification of Cryptococcus neoformans and Cryptococcus gattii by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Clin Microbiol 49(8):3050–3053

    Article  PubMed  PubMed Central  Google Scholar 

  114. Siqueira LPM, Gimenes VMF, de Freitas RS, Melhem MdSC, Bonfietti LX, da Silva AR, Santos LBS, Motta AL, Rossi F, Benard G (2019) Evaluation of Vitek MS for differentiation of Cryptococcus neoformans and Cryptococcus gattii genotypes. J Clin Microbiol 57(1):e01282-e11218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Buchan BW, Ledeboer NA (2013) Advances in identification of clinical yeast isolates by use of matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Clin Microbiol 51(5):1359–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Taverna CG, Mazza M, Bueno NS, Alvarez C, Amigot S, Andreani M, Azula N, Barrios R, Fernández N, Fox B (2018) Development and validation of an extended database for yeast identification by MALDI-TOF MS in Argentina. Med Mycol 57(2):215–225

    Article  CAS  Google Scholar 

  117. Honnavar P, Ghosh A, Paul S, Shankarnarayan S, Singh P, Dogra S, Chakrabarti A, Rudramurthy S (2018) Identification of Malassezia species by MALDI-TOF MS after expansion of database. Diagn Microbiol Infect Dis 92(2):118–123

    Article  CAS  PubMed  Google Scholar 

  118. Yamamoto M, Umeda Y, Yo A, Yamaura M, Makimura K (2014) Utilization of matrix-assisted laser desorption and ionization time-of-flight mass spectrometry for identification of infantile seborrheic dermatitis-causing M alassezia and incidence of culture-based cutaneous Malassezia microbiota of 1-month-old infants. J Dermatol 41(2):117–123

    Article  CAS  PubMed  Google Scholar 

  119. Kolecka A, Khayhan K, Arabatzis M, Velegraki A, Kostrzewa M, Andersson A, Scheynius A, Cafarchia C, Iatta R, Montagna M (2014) Efficient identification of Malassezia yeasts by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Br J Dermatol 170(2):332–341

    Article  CAS  PubMed  Google Scholar 

  120. Diongue K, Kébé O, Faye M, Samb D, Diallo M, Ndiaye M, Seck M, Badiane A, Ranque S, Ndiaye D (2018) MALDI-TOF MS identification of Malassezia species isolated from patients with pityriasis versicolor at the Seafarers’ Medical Service in Dakar. Senegal J Mycol Méd 28(4):590–593

    Article  CAS  PubMed  Google Scholar 

  121. M Américo F, P Machado Siqueira L, B Del Negro GM, M Favero Gimenes V, S Trindade MR, L Motta A, Santos de Freitas R, Rossi F, L Colombo A, Benard G, 2020 Evaluating VITEK MS for the identification of clinically relevant Aspergillus species Med Mycol 58 3 322 327

  122. Stein M, Tran V, Nichol KA, Lagacé-Wiens P, Pieroni P, Adam HJ, Turenne C, Walkty AJ, Normand AC, Hendrickx M (2018) Evaluation of three MALDI-TOF mass spectrometry libraries for the identification of filamentous fungi in three clinical microbiology laboratories in Manitoba. Canada Mycoses 61(10):743–753

    Article  CAS  PubMed  Google Scholar 

  123. Zhou L, Chen Y, Xu Y (2017) Performance of VITEK mass spectrometry V3. 0 for rapid identification of clinical Aspergillus fumigatus in different culture conditions based on ribosomal proteins. Infect Drug Resist 10:499

  124. Vidal-Acuña MR, Ruiz-Pérez de Pipaón M, Torres-Sánchez MJ, Aznar J (2017) Identification of clinical isolates of Aspergillus, including cryptic species, by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Med Mycol 56(7):838–846

    Article  CAS  Google Scholar 

  125. Li Y, Wang H, Zhao Y-P, Xu Y-C, Hsueh P-R (2017) Evaluation of the Bruker biotyper matrix-assisted laser desorption/ionization time-of-flight mass spectrometry system for identification of Aspergillus species directly from growth on solid agar media. Front Microbiol 8:1209

    Article  PubMed  PubMed Central  Google Scholar 

  126. Nakamura S, Sato H, Tanaka R, Kusuya Y, Takahashi H, Yaguchi T (2017) Ribosomal subunit protein typing using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification and discrimination of Aspergillus species. BMC Microbiol 17(1):100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Nucci M, Anaissie E (2007) Fusarium infections in immunocompromised patients. Clin Microbiol Rev 20(4):695–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Triest D, Stubbe D, De Cremer K, Piérard D, Normand A-C, Piarroux R, Detandt M, Hendrickx M (2015) Use of matrix-assisted laser desorption ionization–time of flight mass spectrometry for identification of molds of the Fusarium genus. J Clin Microbiol 53(2):465–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Husain S, Muñoz P, Forrest G, Alexander BD, Somani J, Brennan K, Wagener MM, Singh N (2005) Infections due to Scedosporium apiospermum and Scedosporium prolificans in transplant recipients: clinical characteristics and impact of antifungal agent therapy on outcome. Clin Infect Dis 40(1):89–99

    Article  PubMed  Google Scholar 

  130. Horré R, Marklein G, Siekmeier R, Nidermajer S, Reiffert S (2009) Selective isolation of Pseudallescheria and Scedosporium species from respiratory tract specimens of cystic fibrosis patients. Respiration 77(3):320–324

    Article  PubMed  Google Scholar 

  131. Gilgado F, Cano J, Gené J, Sutton DA, Guarro J (2008) Molecular and phenotypic data supporting distinct species statuses for Scedosporium apiospermum and Pseudallescheria boydii and the proposed new species Scedosporium dehoogii. J Clin Microbiol 46(2):766–771

    Article  PubMed  Google Scholar 

  132. Lackner M, de Hoog GS, Verweij PE, Najafzadeh MJ, Curfs-Breuker I, Klaassen CH, Meis JF (2012) Species-specific antifungal susceptibility patterns of Scedosporium and Pseudallescheria species. Antimicrob Agents Chemother 56(5):2635–2642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Santos C, Paterson R, Venâncio A, Lima N (2010) Filamentous fungal characterizations by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Appl Microbiol 108(2):375–385

    Article  CAS  PubMed  Google Scholar 

  134. Chen Y-S, Liu Y-H, Teng S-H, Liao C-H, Hung C-C, Sheng W-H, Teng L-J, Hsueh P-R (2015) Evaluation of the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry Bruker Biotyper for identification of Penicillium marneffei, Paecilomyces species, Fusarium solani, Rhizopus species, and Pseudallescheria boydii. Front Microbiol 6:679

    PubMed  PubMed Central  Google Scholar 

  135. Lackner M, De Hoog GS, Yang L, Moreno LF, Ahmed SA, Andreas F, Kaltseis J, Nagl M, Lass-Flörl C, Risslegger B (2014) Proposed nomenclature for Pseudallescheria, Scedosporium and related genera. Fungal Divers 67(1):1–10

    Article  Google Scholar 

  136. Sitterlé E, Giraud S, Leto J, Bouchara J-P, Rougeron A, Morio F, Dauphin B, Angebault C, Quesne G, Beretti J-L (2014) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and accurate identification of Pseudallescheria/Scedosporium species. Clin Microbiol Infect 20(9):929–935

    Article  PubMed  CAS  Google Scholar 

  137. Bala K, Chander J, Handa U, Punia RS, Attri AK (2015) A prospective study of mucormycosis in north India: experience from a tertiary care hospital. Med Mycol 53(3):248–257

    Article  PubMed  Google Scholar 

  138. Schrödl W, Heydel T, Schwartze VU, Hoffmann K, Große-Herrenthey A, Walther G, Alastruey-Izquierdo A, Rodriguez-Tudela JL, Olias P, Jacobsen ID (2012) Direct analysis and identification of pathogenic Lichtheimia species by matrix-assisted laser desorption ionization–time of flight analyzer-mediated mass spectrometry. J Clin Microbiol 50(2):419–427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Dolatabadi S, Kolecka A, Versteeg M, de Hoog SG, Boekhout T (2015) Differentiation of clinically relevant Mucorales Rhizopus microsporus and R. arrhizus by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). J Med Microbiol 64 (7):694–701

  140. de Hoog GS, Dukik K, Monod M, Packeu A, Stubbe D, Hendrickx M, Kupsch C, Stielow JB, Freeke J, Göker M (2017) Toward a novel multilocus phylogenetic taxonomy for the dermatophytes. Mycopathologia 182(1–2):5–31

    Article  PubMed  Google Scholar 

  141. L’Ollivier C, Ranque S (2017) MALDI-TOF-based dermatophyte identification. Mycopathologia 182(1–2):183–192

    Article  PubMed  CAS  Google Scholar 

  142. Packeu A, Hendrickx M, Beguin H, Martiny D, Vandenberg O, Detandt M (2013) Identification of the Trichophyton mentagrophytes complex species using MALDI-TOF mass spectrometry. Med Mycol 51(6):580–585

    Article  CAS  PubMed  Google Scholar 

  143. Bartosch T, Heydel T, Uhrlaß S, Nenoff P, Müller H, Baums CG, Schrödl W (2017) MALDI-TOF MS analysis of bovine and zoonotic Trichophyton verrucosum isolates reveals a distinct peak and cluster formation of a subgroup with Trichophyton benhamiae. Med Mycol 56(5):602–609

    Article  CAS  Google Scholar 

  144. Intra J, Sarto C, Tiberti N, Besana S, Savarino C, Brambilla P (2018) Genus-level identification of dermatophytes by MALDI-TOF MS after 2 days of colony growth. Lett Appl Microbiol 67(2):136–143

    Article  CAS  PubMed  Google Scholar 

  145. Da Cunha KC, Riat A, Normand AC, Bosshard PP, De Almeida MT, Piarroux R, Schrenzel J, Fontao L (2018) Fast identification of dermatophytes by MALDI-TOF/MS using direct transfer of fungal cells on ground steel target plates. Mycoses 61(9):691–697

    Article  PubMed  CAS  Google Scholar 

  146. Suh S-O, Grosso KM, Carrion ME (2018) Multilocus phylogeny of the Trichophyton mentagrophytes species complex and the application of matrix-assisted laser desorption/ionization–time-of-flight (MALDI-TOF) mass spectrometry for the rapid identification of dermatophytes. Mycologia 110(1):118–130

    Article  CAS  PubMed  Google Scholar 

  147. Hollemeyer K, Jager S, Altmeyer W, Heinzle E (2005) Proteolytic peptide patterns as indicators for fungal infections and nonfungal affections of human nails measured by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Biochem 338(2):326–331

    Article  CAS  PubMed  Google Scholar 

  148. Revankar SG, Sutton DA (2010) Melanized fungi in human disease. Clin Microbiol Rev 23(4):884–928

    Article  PubMed  PubMed Central  Google Scholar 

  149. Özhak-Baysan B, Öğünç D, Döğen A, Ilkit M, de Hoog GS (2015) MALDI-TOF MS-based identification of black yeasts of the genus Exophiala. Med Mycol 53(4):347–352

    Article  PubMed  Google Scholar 

  150. Marinach C, Alanio A, Palous M, Kwasek S, Fekkar A, Brossas JY, Brun S, Snounou G, Hennequin C, Sanglard D (2009) MALDI-TOF MS-based drug susceptibility testing of pathogens: the example of Candida albicans and fluconazole. Proteomics 9(20):4627–4631

    Article  CAS  PubMed  Google Scholar 

  151. Vatanshenassan M, Boekhout T, Lass-Flörl C, Lackner M, Schubert S, Kostrzewa M, Sparbier K (2018) Proof of concept for MBT ASTRA, a rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based method to detect caspofungin resistance in Candida albicans and Candida glabrata. J Clin Microbiol 56 (9). https://doi.org/10.1128/jcm.00420-18

  152. Vrioni G, Tsiamis C, Oikonomidis G, Theodoridou K, Kapsimali V, Tsakris A (2018) MALDI-TOF mass spectrometry technology for detecting biomarkers of antimicrobial resistance: current achievements and future perspectives. Ann Translation Med 6 (12)

  153. Saracli MA, Fothergill AW, Sutton DA, Wiederhold NP (2015) Detection of triazole resistance among Candida species by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Med Mycol 53(7):736–742

    Article  CAS  PubMed  Google Scholar 

  154. Vella A, De Carolis E, Vaccaro L, Posteraro P, Perlin DS, Kostrzewa M, Posteraro B, Sanguinetti M (2013) Rapid antifungal susceptibility testing by matrix-assisted laser desorption ionization–time of flight mass spectrometry analysis. J Clin Microbiol 51(9):2964–2969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. De Carolis E, Vella A, Florio AR, Posteraro P, Perlin DS, Sanguinetti M, Posteraro B (2012) Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for caspofungin susceptibility testing of Candida and Aspergillus species. J Clin Microbiol 50(7):2479–2483. https://doi.org/10.1128/jcm.00224-12

    Article  PubMed  PubMed Central  Google Scholar 

  156. Hao J, Wu W, Wang Y, Yang Z, Liu Y, Lv Y, Zhai Y, Yang J, Liang Z, Huang K (2015) Arabidopsis thaliana defense response to the ochratoxin A-producing strain (Aspergillus ochraceus 3.4412). Plant cell reports 34 (5):705–719

  157. Villani A, Moretti A, De Saeger S, Han Z, Di Mavungu JD, Soares CM, Proctor RH, Venâncio A, Lima N, Stea G (2016) A polyphasic approach for characterization of a collection of cereal isolates of the Fusarium incarnatum-equiseti species complex. Int J Food Microbiol 234:24–35

    Article  CAS  PubMed  Google Scholar 

  158. Reddy K, Salleh B, Saad B, Abbas H, Abel C, Shier WT (2010) An overview of mycotoxin contamination in foods and its implications for human health. Toxin Rev 29(1):3–26

    Article  CAS  Google Scholar 

  159. Pinton P, Oswald IP (2014) Effect of deoxynivalenol and other type B trichothecenes on the intestine: a review. Toxins 6(5):1615–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Jeyakumar JMJ, Zhang M, Thiruvengadam M (2018) Determination of mycotoxins by HPLC, LC-ESI-MS/MS, and MALDI-TOF MS in Fusarium species-infected sugarcane. Microb Pathog 123:98–110

    Article  CAS  Google Scholar 

  161. Chang S, Porto Carneiro-Leão M, Ferreira de Oliveira B, Souza-Motta C, Lima N, Santos C, Tinti de Oliveira N (2016) Polyphasic approach including MALDI-TOF MS/MS analysis for identification and characterisation of Fusarium verticillioides in Brazilian corn kernels. Toxins 8(3):54

    Article  PubMed Central  CAS  Google Scholar 

  162. Cui L, Morris A, Ghedin E (2013) The human mycobiome in health and disease. Genome Med 5(7):1–12

    Article  Google Scholar 

  163. Beheshti-Maal A, Shahrokh S, Ansari S, Mirsamadi ES, Yadegar A, Mirjalali H, Zali MR (2021) Gut mycobiome: the probable determinative role of fungi in IBD patients. Mycoses 64(5):468–476

    Article  PubMed  Google Scholar 

  164. Samb-Ba B, Mazenot C, Gassama-Sow A, Dubourg G, Richet H, Hugon P, Lagier J-C, Raoult D, Fenollar F (2014) MALDI-TOF identification of the human gut microbiome in people with and without diarrhea in Senegal. PLoS One 9 (5):e87419

  165. Starý L, Mezerová K, Vysloužil K, Zbořil P, Skalický P, Stašek M, Raclavský V (2020) Candida albicans culture from a rectal swab can be associated with newly diagnosed colorectal cancer. Folia Microbiol 65(6):989–994

    Article  CAS  Google Scholar 

  166. Griessl T, Zechel-Gran S, Olejniczak S, Weigel M, Hain T, Domann E (2021) High-resolution taxonomic examination of the oral microbiome after oil pulling with standardized sunflower seed oil and healthy participants: a pilot study. Clin Oral Invest 25(5):2689–2703

    Article  Google Scholar 

  167. Lu J-J, Lo H-J, Lee C-H, Chen M-J, Lin C-C, Chen Y-Z, Tsai M-H, Wang S-H (2021) The use of MALDI-TOF mass spectrometry to analyze commensal oral yeasts in nursing home residents. Microorganisms 9(1):142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali-Akbar Saboor-Yaraghi or Saham Ansari.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Luiz Henrique Rosa

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ali-Akbar Saboor-Yaraghi and Saham Ansari equally contributed to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarvestani, H.K., Ramandi, A., Getso, M.I. et al. Mass spectrometry in research laboratories and clinical diagnostic: a new era in medical mycology. Braz J Microbiol 53, 689–707 (2022). https://doi.org/10.1007/s42770-022-00715-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00715-3

Keywords

Navigation