Skip to main content

Advertisement

Log in

Bioprospecting and selection of tolerant strains and productive analyses of microalgae grown in vinasse

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

In order to contribute to the biotechnology of microalgae cultivated in vinasse, we carried out the bioprospection of tolerant species and synthesized biomolecules of the total biomass (microalgae and bacteria), recovered from cultures. To use vinasse as a culture medium for the microalgae, waste was centrifuged and used in concentrations from 5 to 50%. Daily cell densities, growth rates, and EC50 values were obtained. After defining the best pair of vinasse concentration/microalgae strain, dry biomass, and composition (proteins and carbohydrates) were determined in 96 h cultures, considering the associated community (bacteria and yeast). The microalgae tested were Chlamydomonas sp., Chlorella sorokiniana, Chlorella vulgaris, Desmodesmus spinosus, Haematococcus pluvialis, Monoraphidium sp., Scenedesmus quadricauda, and Tetraselmis gracilis. The results showed that although the microalgal growth rates in vinasse were similar to controls in BG11, the cells in vinasse had higher biovolumes, dry biomass, and total proteins. The species H. pluvialis, S. quadricauda, and T. gracilis showed the best productivity parameters in vinasse, despite lower growth rates than the other species. Using low concentrations of centrifuged vinasse as a culture medium, only 22% of biological contaminants were present, thus most of the processed biomass was mainly composed of microalgae. Thus, Chlamydomonas sp., D. spinosus, S. quadricauda, and H. pluvialis microalgae have attributes such as resistance and biomolecules that make them candidates for further optimization in production systems, combining the environmental benefits of using waste with the production of biomolecules and/or biomass of commercial interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Silva MAS, Griebeler NP, Borges LC (2007) Uso de Vinhaça e impactos nas propriedades do solo e lençol freático. Rev Bras de Eng Agricola e Ambient 11:108–114

    Article  Google Scholar 

  2. Godoi LA, de G, Camiloti P R, Bernardes A N, Sanchez B L S, Torres A P R, da Conceição G A, Botta L S, (2019) Seasonal variation of the organic and inorganic composition of sugarcane vinasse: main implications for its environmental uses. Environ Sci Pollut Res 26:29267–29282

    Article  CAS  Google Scholar 

  3. Borowitzka MA (2013) High-value products from microalgae — their development and commercialization. J Appl Psychol 25:743–756

    CAS  Google Scholar 

  4. Candido C, Lombardi AT (2013) The physiology of Chlorella vulgaris grown in conventional and biodigested treated vinasses. Algal Res 30:79–85

    Article  Google Scholar 

  5. Borges LV, Faria BM, Odebrecht C, Abreu PCOV (2007) Potencial de absorção de carbono por espécies de microalgas usadas na aquicultura: primeiros passos para o desenvolvimento de um “mecanismo de Desenvolvimento limpo.” Rev atl 29:35–46

    Google Scholar 

  6. Kadioglu A, Algur OF (1992) Tests of media with vinasse for Chlamydomonas reinhardii for possible reduction in vinasse pollution. Bioresour Technol 42:1–5

    Article  CAS  Google Scholar 

  7. Lananan F, Jusoh A, Ali NA, Lam SS, Endut A (2013) Effect of conway medium and f/2 medium on the growth of six genera of South China sea marine microalgae. Bioresour Technol 141:75–82

    Article  CAS  PubMed  Google Scholar 

  8. Marchello AE, Lombardi AT, Dellamano-Oliveira MJ, Souza CWO (2015) Microalgae population dynamics in photobioreactors with secondary sewage effluent as culture medium. Braz J Microbiol 46:75–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marchello AE, dos Santos AC, Lombardi AT, de Souza CWO, Montanhim GC (2018) Physiological and ecological aspects of Chlorella sorokiniana (Trebouxiophyceae) under photoautotrophic and mixotrophic conditions. Microb Ecol 76:1–10

    Article  CAS  Google Scholar 

  10. Marques SSI, Nascimento IA, Almeida PF, Chinalia FA (2013) Growth of Chlorella vulgaris on sugarcane vinasse: the effect of anaerobic digestion pretreatment. Appl Biochem Biotechnol 171:1933–1943

    Article  CAS  PubMed  Google Scholar 

  11. Budiyono IS, Sumardiono S, Sasongko SB (2014) Production of Spirulina platensis biomass using digested vinasse as cultivation medium. Trends Appl Sci Res 9:93–102

    Article  CAS  Google Scholar 

  12. Candido C, Lombardi AT (2017) Growth of Chlorella vulgaris in treated conventional and biodigested vinasses. J Appl Psychol 29:45–53

    CAS  Google Scholar 

  13. Montalvo GEB, Thomaz-Soccol V, Vandenberghe LPS, Carvalho JC, Faulds CB, Bertrand E, Soccol CR (2018) Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production. Bioresour Technol 273:103–113

    Article  PubMed  CAS  Google Scholar 

  14. Engin IK, Cekmecelioglu D, Yücel AM, Oktem HA (2018) Evaluation of heterotrophic and mixotrophic cultivation of novel Micractinium sp ME05 on vinasse and its scale up for biodiesel production. Bioresour Technol 251:128–134

    Article  CAS  PubMed  Google Scholar 

  15. Falconí JH, Soares J, Rocha DN, Vaz MG, Martins MA (2020) Strain screening and ozone pretreatment for algae farming in wastewaters from sugarcane ethanol biorefinery J Clean. Prod 282:124522

    Google Scholar 

  16. Tasic MB, Bonon AJ, Schiavon MI, Colling KB, Veljković VB, Maciel FR (2021) Cultivation of Chlamydomonas reinhardtii in anaerobically digested vinasse for bioethanol production. Waste Biomass Valorization 12:857–865

    Article  CAS  Google Scholar 

  17. Mitra D, Van Leeuwen JH, Lamsal B (2012) Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products Algal Res 1:40–48

    CAS  Google Scholar 

  18. Coca M, Barrocal VM, Lucas S, González-Benito G, García-Cubero MT (2015) Protein production in Spirulina platensis biomass using beet vinasse-supplemented culture media. Food Bioprod Process 94:306–312

    Article  CAS  Google Scholar 

  19. Rippka R, Deruelles J, Waterbury J, Herdman M, Stanier R (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  20. Lee RE (2008) Phycology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  21. Costa PHA, Silva JV, Bezerra MA, Enéas FJ, Prisco JT, Gomes FE (2003) Growth and organic and inorganic solute contents in NaCl-stressed cultivars of Vigna unguiculata. Rev Bras Bot 26:289–297

    Article  Google Scholar 

  22. Rodrigues LHR, Raya-Rodriguez MT, Fontoura NF (2011) Algal density assessed by spectrophotometry: a calibration curve for the unicellular algae Pseudokirchneriella subcapitata. J Environ Chem 3:225–228

    Google Scholar 

  23. Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Appl Psychol 35:403–424

    Google Scholar 

  24. Rausch T (1981) The estimation of micro-algal protein content and its meaning to the evaluation of algal biomass I Comparison of methods for extracting protein. Hydrobiologia 78:237–251

    Article  CAS  Google Scholar 

  25. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  26. Albalasmeh AA, Berhe AA, Ghezzehei TA (2013) A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydr Polym 97:253–261

    Article  CAS  PubMed  Google Scholar 

  27. Ryan D, Gadd A, Kavanagh J, Zhou M, Barton G (2008) A comparison of coagulant dosing options for the remediation of molasses process water. Sep Purif Technol 58:347–352

    Article  CAS  Google Scholar 

  28. Mohana S, Acharya BK, Madamwar D (2009) Distillery spent wash: treatment technologies and potential applications. J Hazard Mater 163:12–25

    Article  CAS  PubMed  Google Scholar 

  29. Oliveira HT (1988) Utilização de vinhaça como meio de cultura para Chlorella vulgaris. Dissertation, Universidade Federal de São Carlos

  30. Silva MA, Barbosa GH, Codato CB, Mattos LFA, Bastos RG, Kieckbusch TG (2017) Heterotrophic growth of green microalgae Desmodesmus subspicatus in ethanol distillation wastewater (vinasse) and lipid extraction with supercritical CO2. J Chem Technol Biotechnol 92:573–579

    Article  CAS  Google Scholar 

  31. Yu X, Zhao P, He C, Li J, Tang X, Zhou J, Huang Z (2012) Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock. Bioresour Technol 121:256–262

    Article  CAS  PubMed  Google Scholar 

  32. Guo J, Selby K, Boxall AB (2016) Comparing the sensitivity of chlorophytes, cyanobacteria, and diatoms to major-use antibiotics. Environ Toxicol Chem 35:2587–2596

    Article  CAS  PubMed  Google Scholar 

  33. Gomaa M, Zien-Elabdeen A, Hifney AF, Adam MS (2021) Phycotoxicity of antibiotics and non-steroidal anti-inflammatory drugs to green algae Chlorella sp and Desmodesmus spinosus: assessment of combined toxicity by Box-Behnken experimental design. Environ Technol Innov 23:101586

    Article  CAS  Google Scholar 

  34. Ji B, Wang S, Silva MRU, Zhang M, Liu Y (2021) Microalgal-bacterial granular sludge for municipal wastewater treatment under simulated natural diel cycles: Performances-metabolic pathways-microbial community nexus. Algal Res 54:102198

    Article  Google Scholar 

  35. Cardoso LG, Lombardi AT, de Jesus JS, Lemos PVF, Costa JAV, de Souza CO, Druzian JI, Chinalia FA (2021) Scaling-up production of Spirulina sp. LEB18 grown in aquaculture wastewater. Aquaculture 544:737045

    Article  CAS  Google Scholar 

  36. de Jesus GC, Gaspar BR, Altenhofen SM (2019) Production and characterization of alginate beads for growth of immobilized Desmodesmus subspicatus and its potential to remove potassium, carbon and nitrogen from sugarcane vinasse. Biocatal Agric Biotechnol. 22:101438

    Article  Google Scholar 

  37. Asma VM, Mathew KJ (2001) Uptake of an organochlorine insecticide by a microalga Tetraselmis gracilis. Indian J Fish 48:40–54

    Google Scholar 

  38. Lombardi AT, Maldonado MT (2011) The effects of copper on the photosynthetic response of Phaeocystis cordata. Photosynth Res 108:77–87

    Article  CAS  PubMed  Google Scholar 

  39. Gollo AL, Silva ALL, Lima KKD, Costa JDL, Camara MC, Biasi LA, Soccol CR (2016) Developing a plant culture medium composed of vinasse originating from Haematococcus pluvialis culture. Pak J Bot 48:295–303

    CAS  Google Scholar 

  40. Haque F, Dutta A, Thimmanagari M, Chiang YW (2017) Integrated Haematococcus pluvialis biomass production and nutrient removal using bioethanol plant waste effluent. Process Saf Environ Prot 111:128–137

    Article  CAS  Google Scholar 

  41. Ramirez NNV, Farenzena M, Trierweiler JO (2014) Growth of microalgae Scenedesmus sp. in ethanol vinasse. Braz Arch Biol Technol 57:630–635

    Article  CAS  Google Scholar 

  42. Rocha GS, Pinto FHV, Melão MGG, Lombardi AT (2015) Growing Scenedesmus quadricauda in used culture media: is it viable? J Appl Psychol 27:171–178

    Google Scholar 

  43. Saros JE, Anderson NJ (2015) The ecology of the planktonic diatom Cyclotella and its implications for global environmental change studies. Biol Rev 90:522–541

    Article  CAS  PubMed  Google Scholar 

  44. Mandal S, Shurin JB, Efroymson RA, Mathews TJ (2018) Functional divergence in nitrogen uptake rates explains diversity–productivity relationship in microalgal communities. Ecosphere 9:e02228

    Google Scholar 

  45. Sutherland DL, Heubeck S, Park J, Turnbull MH, Craggs RJ (2018) Seasonal performance of a full-scale wastewater treatment enhanced pond system. Water Res 136:150–159

    Article  CAS  PubMed  Google Scholar 

  46. Barrocal VM, García-Cubero MT, González-Benito G, Coca M (2010) Production of biomass by Spirulina maxima using sugar beet vinasse in growth media. New Biotechnol 27:851–856

    Article  CAS  Google Scholar 

  47. Santana H, Cereijo CR, Teles VC, Nascimento RC, Fernandes MS, Brunale P, Siqueira FG (2017) Microalgae cultivation in sugarcane vinasse: Selection, growth and biochemical characterization. Bioresour Technol 228:133–140

    Article  CAS  PubMed  Google Scholar 

  48. Santos RR, Araújo ODQF, Medeiros JL, Chaloub RM (2016) Cultivation of Spirulina maxima in medium supplemented with sugarcane vinasse. Bioresour Technol 204:38–48

    Article  PubMed  CAS  Google Scholar 

  49. Cochrane VW (1958) Physiology of fungi. John Wiley and Sons Inc, London

    Book  Google Scholar 

Download references

Acknowledgements

This study received support from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES–Brasil, Finance Code 001), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq–Brasil Proc. No. 304280/2019-4) and the São Paulo Research Foundation (FAPESP Process 2018/07988-5). We would like to thank Prof. Dr. Clóvis Wesley de Souza (DMP UFSCar) for his contribution in isolating the algal strains used in the initial experiments.

Funding

Described in the “Acknowledgements” section of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C Candido: conceptualization, investigation, formal analysis, writing—original draft, review, editing, and graphics. L G Cardoso: conceptualization, writing—original draft, review, editing, and graphics. A T Lombardi: conceptualization, funding acquisition, and supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lucas Guimarães Cardoso.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate.

Not applicable.

Consent for publication.

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Candido, C., Cardoso, L.G. & Lombardi, A.T. Bioprospecting and selection of tolerant strains and productive analyses of microalgae grown in vinasse. Braz J Microbiol 53, 845–855 (2022). https://doi.org/10.1007/s42770-022-00692-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00692-7

Keywords

Navigation