Skip to main content

Advertisement

Log in

The promising anti-virulence activity of candesartan, domperidone, and miconazole on Staphylococcus aureus

  • Bacterial and Fungal Pathogenesis - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Staphylococcus aureus is a primary cause of hospital and community-acquired infections. With the emergence of multidrug-resistant S. aureus strains, there is a need for new drugs discovery. Due to the poor supply of new antimicrobials, targeting virulence of S. aureus may generate weaker selection for resistant strains, anti-virulence agents disarm the pathogen instead of killing it. In this study, the ability of the FDA-approved drugs domperidone, candesartan, and miconazole as inhibitors of S. aureus virulence was investigated. The effect of tested drugs was evaluated against biofilm formation, lipase, protease, hemolysin, and staphyloxanthin production by using phenotypic and genotypic methods. At sub-inhibitory concentrations, candesartan, domperidone, and miconazole showed a significant inhibition of hemolysin (75.8–96%), staphyloxanthin (81.2–85%), lipase (50–65%), protease (40–64%), and biofilm formation (71.4–90%). Domperidone and candesartan have similar activity and were more powerful than miconazole against S. aureus virulence. The hemolysins and lipase inhibition were the greatest under the domperidone effect. Candesartan showed a remarkable reduction in staphyloxanthin production. The highest inhibitory effect of proteolytic activity was obtained with domperidone and candesartan. Biofilm was significantly reduced by miconazole. Expression levels of crtM, sigB, sarA, agrA, hla, fnbA, and icaA genes were significantly reduced under candesartan (68.98–82.7%), domperidone (62.6–77.2%), and miconazole (32.96–52.6%) at sub-MIC concentrations. Candesartan showed the highest inhibition activity against crtM, sigB, sarA, agrA, hla, and icaA expression followed by domperidone then miconazole. Domperidone showed the highest downregulation activity against fnbA gene. In conclusion, candesartan, domperidone, and miconazole could serve as anti-virulence agents for attenuation of S. aureus pathogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Padmavathy K, Praveen S, Madhavan R, Krithika N, Kiruthiga AJ (2015) Clinico-microbiological investigation of catheter associated urinary tract infection by Enterococcus faecalis: vanA genotype. Clin Diagn Res 9:DD05–DD06. https://doi.org/10.7860/JCDR/2015/13856.6378

    Article  CAS  Google Scholar 

  2. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28:603–661. https://doi.org/10.1128/CMR.00134-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Harris L, Foster S, Richards R (2002) An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: review. Eur Cell Mater 4:39–60

    Article  CAS  PubMed  Google Scholar 

  4. Wertheim HFL, Melles DC, Vos MC, van Leeuwen W, van BelKum A, Verbrugh HA, Nouwen JL (2005) The role of nasal carriage in Staphylococcus aureus infections. The Lancet Infect Dis 5:751–762

    Article  PubMed  Google Scholar 

  5. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532

    Article  CAS  PubMed  Google Scholar 

  6. Holmes A, Ganner M, McGuane S, Pitt TL, Cookson BD, Kearns AM (2005) Staphylococcus aureus isolates carrying Panton-Valentine leucocidin genes in England and Wales: frequency, characterization, and association with clinical disease. J Clin Microbiol 43:2384–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dinges MM, Orwin PM, Schlievert PM (2000) Exotoxins of Staphylococcus aureus. Clin Microbiol Rev 13:16–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kaneko J, Kamio Y (2004) Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures pore-forming mechanism organization of the genes. Biosci Biotechnol Biochem 68:981–1003

    Article  CAS  PubMed  Google Scholar 

  9. Foster TJ (2005) Immune evasion by staphylococci. Nat Rev Microbiol 3:948–958

    Article  CAS  PubMed  Google Scholar 

  10. Sakai K, Koyama N, Fukuda T, Mori Y, Onaka H, Tomoda H (2012) Search method for inhibitors of Staphyloxanthin production by methicillin-resistant Staphylococcus aureus. Biol Pharm Bull 35:48–53

    Article  CAS  PubMed  Google Scholar 

  11. Vuong C, Gotz F, Otto M (2000) Construction and characterization of an agr deletion mutant of Staphylococcus epidermidis. Infect Immun 68:1048–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yarwood JM, Schlievert PM (2003) Quorum sensing in Staphylococcus infections. J Clin Invest 112:1620–1625. https://doi.org/10.1172/JCI20442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bien J, Sokolova O, Bozko PP (2011) Characterization of virulence factors of Staphylococcus aureus: novel function of known virulence factors that are implicated in activation of airway epithelial proinflammatory response. J Pathog 2011:601905. https://doi.org/10.4061/2011/601905

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF et al (2015) Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med 202:209–215

    Article  Google Scholar 

  15. Mishra NN, Liu GY, Yeaman MR, Nast CC, Proctor RA, McKinnell J et al (2011) Carotenoid-related alteration of cell membrane fluidity impacts Staphylococcus aureus susceptibility to host defense peptides. Antimicrob Agents Chemother 55:526–531

    Article  CAS  PubMed  Google Scholar 

  16. Yarwood JM, Paquette KM, Tikh LB, Volper EM, Greenberg EP (2007) Generation of virulence factor variants in Staphylococcus aureus biofilms. J Bacteriol 189:7961–7967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Craft KM, Nguyen JM, Berg LJ, Townsend SD (2019) Methicillin-resistant Staphylococcus aureus (MRSA): antibiotic-resistance and the biofilm phenotype. Medchemcomm 10:1231–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S et al (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298:1763–1771. https://doi.org/10.1001/jama.298.15.1763

    Article  CAS  PubMed  Google Scholar 

  19. Klein EY, Mojica N, Jiang W, Cosgrove SE, Septimus E, Morgan DJ et al (2017) Trends in methicillin-resistant Staphylococcus aureus hospitalizations in the United States 2010–2014. Clin Infect Dis 65:1921–1923. https://doi.org/10.1093/cid/cix640

    Article  PubMed  Google Scholar 

  20. Pichereau S, Rose WE (2010) Invasive community-associated MRSA infections: epidemiology and antimicrobial management. Expert Opin Pharmacother 11:3009–3025. https://doi.org/10.1517/14656566.2010.511614

    Article  PubMed  Google Scholar 

  21. Lindsay JA (2013) Hospital-associated MRSA and antibiotic resistance-what have we learned from genomics? Int J Med Microbiol 303:318–323. https://doi.org/10.1016/j.ijmm.2013.02.005

    Article  PubMed  Google Scholar 

  22. Otto M (2013) Community-associated MRSA: what makes them special? Int J Med Microbiol 303:324–330. https://doi.org/10.1016/j.ijmm.2013.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lakhundi S, Zhang K (2018) Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev 31(4):e00020-e118. https://doi.org/10.1128/CMR.00020-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hassoun A, Linden PK, Friedman B (2017) Incidence, prevalence, and management of MRSA bacteremia across patient populations-a review of recent developments in MRSA management and treatment. Crit Care 21:211. https://doi.org/10.1186/s13054-017-1801-3

    Article  PubMed  PubMed Central  Google Scholar 

  25. Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK, Flannagan SE et al (2003) Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302:1569–1571

    Article  CAS  PubMed  Google Scholar 

  26. Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10:S122–S129. https://doi.org/10.1038/nm1145

    Article  CAS  PubMed  Google Scholar 

  27. Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ (2008) The biology and future prospects of antivirulence therapies. Nat Rev Microbiol 6:17–27. https://doi.org/10.1038/nrmicro1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boguski MS, Mandl KD, Sukhatme VP (2009) Drug discovery. Repurposing with a difference. Science 324:1394–1395

    Article  CAS  PubMed  Google Scholar 

  29. Younis W, AbdelKhalek A, Mayhoub AS, Seleem MN (2017) In vitro screening of an FDA-approved library against ESKAPE pathogens. Curr Pharm Des 23:2147–2157. https://doi.org/10.2174/1381612823666170209154745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deng WL (2010) Observation of curative effects of omeprazole in treating 53 cases of chronic superficial gastritis. J Med Theory Pract 23:301–302

    Google Scholar 

  31. Alsterholm M, Karami N, Faergemann J (2010) Antimicrobial activity of topical skin pharmaceuticals – an in vitro study. Acta Derm Venereol 90:239–245

    Article  CAS  PubMed  Google Scholar 

  32. Piérard GE, Hermanns-Lê T, Delvenne P, Piérard-Franchimont C (2012) Miconazole, a pharmacological barrier to skin fungal infections. Expert opin Pharmacother 13:1187–1194

    Article  PubMed  Google Scholar 

  33. Clark SM, Loeffler A, Schmidt VM, Chang Y, Wilson A, Timofte D, Bond R (2016) Interaction of chlorhexidine with tris-EDTA or miconazole in vitro against canine meticillin-resistant and -susceptible Staphylococcus pseudintermedius isolates from two UK regions. Vet Dermatol 27:340–345

    Article  PubMed  Google Scholar 

  34. Nenoff P, Koch D, Krüger C, Drechsel C, Mayser P (2017) New insights on the antibacterial efficacy of miconazole in vitro. Mycoses 60:552–557

    Article  CAS  PubMed  Google Scholar 

  35. Vandepitte J, Verhaegen J, Engbaek K, Rohner P, Piot R, Heuck CC (2003) Basic laboratory procedures in clinical bacteriology, 2nd edn. World Health Organization, Geneva

    Google Scholar 

  36. Clinical Laboratory Standards Institute, Performance standards for antimicrobial susceptibility testing (2015). CLSI document M100-S-25. Wayne, PA.

  37. Nalca Y, Jänsch L, Bredenbruch F, Geffers R, Buer J, Häussler S (2006) Quorum sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach. Antimicrob Agents Chemother 50:1680–1688. https://doi.org/10.1128/AAC.50.5.1680-1688.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carson CF, Mee BJ, Riley TV (2002) Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother 46:1914–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xiang H, Qiu JZ, Wang DC, Jiang Y, Xia L, Deng X (2010) Influence of magnolol on the secretion of α-toxin by Staphylococcus aureus. Molecules 15:1679–1689. https://doi.org/10.3390/molecules15031679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vijayaraghavan P, Vincent SGP (2013) A simple method for the detection of protease activity on agar plates using bromocresolgreen dye. J Biochem Tech 4:628–630

    CAS  Google Scholar 

  41. Stepanovic S, Vukovic D, Hola V, Di Bonaventura G, Djukic S, Cirkovic I, Ruzicka F (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115:891–899

    Article  PubMed  Google Scholar 

  42. Gould SWJ, Chadwick M, Cuschieri P, Easmon S, Richardson AC, Price RG et al (2009) The evaluation of novel chromogenic substrates for the detection of lipolytic activity in clinical isolates of Staphylococcus aureus and MRSA from two European study groups. FEMS Microbiol Lett 297:10–16

    Article  CAS  PubMed  Google Scholar 

  43. Al-kazaz EJ, Melconian AK, Kandela NJ (2014) Extraction of Staphyloxanthin from Staphylococcus aureus isolated from clinical sources to determine its antibacterial activity against other bacteria. Iraqi J Sci 55:1823–1832

    Google Scholar 

  44. Trott O, Olson AJ (2010) AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of Staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274:1859–1865

    Article  CAS  PubMed  Google Scholar 

  46. Suree N, Liew CK, Villareal VA, Thieu W, Fadeev EA, Clemens JJ et al (2009) The structure of the Staphylococcus aureus sortase-substrate complex reveals how the universally conserved LPXTG sorting signal is recognized*. J Biol Chem 284:24465–24477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sidote DJ, Barbieri CM, Wu T, Stock AM (2008) Structure of the Staphylococcus aureus AgrA LytTR domain bound to DNA reveals a beta fold with an unusual mode of binding. Structure 16:727–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu C-I, Liu GY, Song Y, Yin F, Hensler ME, Jeng W-Y et al (2008) A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science 319:1391–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC

  50. Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786

    Article  CAS  PubMed  Google Scholar 

  51. Antonic V, Stojadinovic A, Zhang B, Izadjoo MJ, Alavi M (2013) Pseudomonas aeruginosa induces pigment production and enhances virulence in a white phenotypic variant of Staphylococcus aureus. Infect Drug Resist 6:175–186

    PubMed  PubMed Central  Google Scholar 

  52. Sambanthamoorthy K, Smeltzer KM, Elasri MO (2006) Identification and characterization of msa (SA1233), a gene involved in expression of SarA and several virulence factors in Staphylococcus aureus. Microbiology 152:2559–2572

    Article  CAS  PubMed  Google Scholar 

  53. Kot B, Sytykiewicz H, Sprawka I (2018) Expression of the biofilm-associated genes in methicillin-resistant Staphylococcus aureus in biofilm and planktonic conditions. Int J Mol Sci 19:3487

    Article  PubMed Central  Google Scholar 

  54. Lee JH, Cho HS, Kim Y, Kim J, Banskota S, Cho MH et al (2013) Indole and 7-benzyloxyindole attenuate the virulence of Staphylococcus aureus. Appl Microbiol Biotechnol 97:4543–4552. https://doi.org/10.1007/s00253-012-4674-z

    Article  CAS  PubMed  Google Scholar 

  55. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  56. Tong SYC, Authora C, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28:603–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kong C, Neoh H, Nathan S (2016) Targeting Staphylococcus aureus toxins: a potential form of anti-virulence therapy. Toxins (Basel) 8:72

    Article  Google Scholar 

  58. Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122. https://doi.org/10.1038/nrd1008

    Article  CAS  PubMed  Google Scholar 

  59. Mujwar S, Deshmukh R, Harwansh RK, Gupta JK, Gour A (2019) Drug repurposing approach for developing novel therapy against mupirocin-resistant Staphylococcus aureus. Assay Drug Dev Technol 17:944

    Article  Google Scholar 

  60. Coates A, Hu Y, Bax R, Page C (2002) The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov 1:895–910

    Article  CAS  PubMed  Google Scholar 

  61. Martínez OF, Cardoso MH, Ribeiro SM, Franco OL (2019) Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Front Cell Infect Microbiol 9:74. https://doi.org/10.3389/fcimb.2019.00074

    Article  CAS  Google Scholar 

  62. Seleem NM, Abd El Latif HK, Shaldam MA, El-Ganiny AM (2020) Drugs with new lease of life as quorum sensing inhibitors: for combating MDR Acinetobacter baumannii infections. Eur J Clin Microbiol Infect Dis. 39:1687–1702. https://doi.org/10.1007/s10096-020-03882-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Abbas HA, Atallah H, El-Sayed MA, El-Ganiny AM (2020) Diclofenac mitigates virulence of multidrug-resistant Staphylococcus aureus. Arch Microbiol 10:2751–2760. https://doi.org/10.1007/s00203-020-01992-y

    Article  CAS  Google Scholar 

  64. El-Mowafy SA, Abd El Galil KH, Habib ESE, Shaaban MI (2017) Quorum sensing inhibitory activity of sub-inhibitory concentrations of β-lactams. Afr Health Sci 17:199–207

    Article  PubMed  PubMed Central  Google Scholar 

  65. Swamy KHS, Sirsi M, Rao GR (1974) Studies on the mechanism of action of miconazole: effect of miconazole on respiration and cell permeability of Candida albicans. Antimicrob Agents Chemother 5:420–425

    Article  PubMed Central  Google Scholar 

  66. Sud IJ, Chou DL, Feingold DS (1979) Effect of free fatty acids on liposome susceptibility to imidazole antifungals. Antimicrob Agents Chemother 16:660–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rani N, Sharma A, Dahiya RS (2013) Imidazoles as promising scaffolds for antibacterial activity: a review. Mini-Rev Med Chem 13:1812–1835. https://doi.org/10.2174/13895575113136660091

    Article  CAS  PubMed  Google Scholar 

  68. Faheem K, Rubina A, Rukesh M, Muhammad RH, Shabana US, Khalid MK, Muhammad IM (2020) Enhanced anti-bacterial activity of non-antibacterial drug candesartan cilexetil by delivery through polymeric micelles. ChemistrySelect 5:3605–3612

    Article  Google Scholar 

  69. Kruszewska H, Zareba T, Tyski S (2005) Examination of antimicrobial activity of selected non-antibiotic drugs. Acta Pol Pharm 61:18–21

    Google Scholar 

  70. Zou Z, Zhou X, Wang J (2017) Antibacterial activity of ondansetron and granisetron in vitro. Int J Clin Exp Med 10:450–454

    CAS  Google Scholar 

  71. Abdel-Halim H, Al Dajani A, Abdelhalim A, Abdelmalek S (2019) The search of potential inhibitors of the AcrAB-TolC system of multidrug-resistant Escherichia coli: an in silico approach. Appl Microbiol Biotechnol 103:6309–6318

    Article  CAS  PubMed  Google Scholar 

  72. D’Angelo F, Baldelli V, Halliday N, Pantalone P, Polticelli F, Fiscarelli E et al (2018) Identification of FDA-approved drugs as anti-virulence agents targeting the pqs quorum-sensing system of Pseudomonas aeruginosa. Antimicrob Agents Chemother 62:e01296-1318. https://doi.org/10.1128/AAC.01296-18

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lee JH, Kim YG, Lee K, Kim C, Park D, Ju Y et al (2016) Streptomyces-derived actinomycin D inhibits bioflm formation by Staphylococcus aureus and its hemolytic activity. Biofouling 32:45–56. https://doi.org/10.1080/08927014.2015.1125888

    Article  CAS  PubMed  Google Scholar 

  74. Abbas HA, Elsherbini AM, Shaldam MA (2019) Glyceryl trinitrate blocks staphyloxanthin and bioflm formation in Staphylococcus aureus. Afr Health Sci 19:1376–1384. https://doi.org/10.4314/ahs.v19i1.10

    Article  PubMed  PubMed Central  Google Scholar 

  75. Abbas HA, Serry FM, EL-Masry EM (2012) Combating Pseudomonas aeruginosa biofilms by potential biofilm inhibitors. Asian J Res Pharm Sci 2:66–72

    Google Scholar 

  76. Srividya G, Deepthi B, Lakshminarasaiah S (2017) Ascorbic acid enhances ciprofloxacin antibacterial activity in vitro against isolates of Escherichia coli from subclinical mastitis cases of buffaloes. IJVSAH 2:21–24

    Google Scholar 

  77. Selvaraj A, Jayasree T, Valliammai A, Pandian SK (2019) Myrtenol attenuates MRSA bioflm and virulence by suppressing sarA expression dynamism. Front Microbiol 10:1–15. https://doi.org/10.3389/fmicb.2019.02027

    Article  Google Scholar 

  78. Kong C, Chee C, Richter K, Thomas N, Abd. Rahman N, Nathan S (2018) Suppression of Staphylococcus aureus bioflm formation and virulence by a benzimidazole derivative, UM-C162. Sci Rep 8:2758. https://doi.org/10.1038/s41598-018-21141-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tharmalingam N, Khader R, Fuchs BB, Mylonakis E (2019) The anti-virulence efficacy of 4-(1,3-dimethyl-2,3-dihydro-1H-benzimidazol-2-yl)phenol against methicillin-resistant Staphylococcus aureus. Front Microbiol 10:1557. https://doi.org/10.3389/fmicb.2019.01557

    Article  PubMed  PubMed Central  Google Scholar 

  80. Abdelaziz AA, El-Barrawy MA, El-Nagar RAM (2020) Potent synergistic combination of rosuvastatin and levofloxacin against Staphylococcus aureus: in vitro and in vivo study. J Appl Microbiol 131:182–196. https://doi.org/10.1111/jam.14968

    Article  CAS  PubMed  Google Scholar 

  81. Chen F, Di H, Wang Y, Cao Q, Xu B, Zhang X et al (2016) Small-molecule targeting of a diapophytoene desaturase inhibits S. aureus virulence. Nat Chem Biol 12:174

    Article  CAS  PubMed  Google Scholar 

  82. Leejae S, Hasap L, Voravuthikunchai SP (2013) Inhibition of staphyloxanthin biosynthesis in Staphylococcus aureus by rhodomyrtone, a novel antibiotic candidate. J Med Microbiol 62:421–428. https://doi.org/10.1099/jmm.0.047316-0

    Article  CAS  PubMed  Google Scholar 

  83. Cho O, Shiokam T, Ando Y, Aoki N, Uehara C, Maeda E, Matsumoto S, Kurakado S, Sugita T (2014) Screening of compounds from an FDA-approved drug library for the ability to inhibit aspartic protease secretion from the pathogenic yeast Candida albicans. Pharmaceut Reg Affairs 3:5. https://doi.org/10.4172/2167-7689.1000126

    Article  Google Scholar 

  84. Zainal M, Zain NM, Amin IM, Ahmad VN (2021) The antimicrobial and antibiofilm properties of allicin against Candida albicans and Staphylococcus aureus – A therapeutic potential for denture stomatitis. The Saudi Dent J 33:105–111. https://doi.org/10.1016/j.sdentj.2020.01.008

    Article  PubMed  Google Scholar 

  85. Beenken KE, Blevins JS, Smeltzer MS (2003) Mutation of sarA in Staphylococcus aureus limits biofilm formation. Infect Immun 71:4206–4211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gertz S, Engelmann SS, Schmid R, Ziebandt A, Tischer K, Scharf C et al (2000) Characterization of the ςB Regulon in Staphylococcus aureus. J Bacteriol 182:6983–6991. https://doi.org/10.1128/jb.182.24.6983-6991.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kane TL, Carothers KE, Lee SW (2018) Virulence factor targeting of the bacterial pathogen Staphylococcus aureus for vaccine and therapeutics. Curr Drug Targets 19:111–127. https://doi.org/10.2174/1389450117666161128123536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Murai M, Moriyama H, Hata E, Takeuchi F, Amemura-Maekawa J (2016) Variation and association of fibronectin-binding protein genes fnbA and fnbB in Staphylococcus aureus Japanese isolates. Microbiol Immunol 60:312–325

    Article  CAS  PubMed  Google Scholar 

  89. Haddad O, Merghni A, Elargoubi A, Rhim H, Kadri Y, Mastouri M (2018) Comparative study of virulence factors among methicillin resistant Staphylococcus aureus clinical isolates. BMC Infect Dis 18:560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cue D, Lei MG, Lee CY (2012) Genetic regulation of the intercellular adhesion locus in Staphylococci. Front Cell Infect Microbiol 2:38

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bhakdi S, Tranum-Jensen J (1991) Alpha-toxin of Staphylococcus aureus. Microbiol Rev 55:733–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Khodaverdian V, Pesho M, Truitt B, Bollinger L, Patel P, Nithianantham S et al (2013) Discovery of anti-virulence agents against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 57:3645–3652. https://doi.org/10.1128/AAC.00269-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hendrix AS, Spoonmore TJ, Wilde AD, Putnam NE, Hammer ND, Snyder DJ et al (2016) Repurposing the non-steroidal anti-infammatory drug difunisal as an osteoprotective, antivirulence therapy for Staphylococcus aureus osteomyelitis. Antimicrob Agents Chemother 60:5322–5330. https://doi.org/10.1128/AAC.00834-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mu YQ, Xie TT, Zeng H, Chen W, Wan CX, Zhang LL (2020) Streptomyces-derived actinomycin D inhibits bioflm formation via downregulating ica locus and decreasing production of PIA in Staphylococcus epidermidis. J Appl Microbiol 128:1201–1207. https://doi.org/10.1111/jam.14543

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

M.A.E., A.M.E., and H.A.A. designed the study. A.I.G. conducted the experiments. M.A.S. performed the docking study. A.I.G., H.A.A., and A.M.E. analyzed the results and performed the statistical analysis. A.I.G. wrote the manuscript draft. A.M.E. and H.A.A. revised and edited the manuscript. All the authors approved the final manuscript.

Corresponding author

Correspondence to Amany I. Gad.

Ethics declarations

Ethical approval

The paper does not contain any study on human participants or animals.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Fernando R. Pavan

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Ganiny, A.M., Gad, A.I., El-Sayed, M.A. et al. The promising anti-virulence activity of candesartan, domperidone, and miconazole on Staphylococcus aureus. Braz J Microbiol 53, 1–18 (2022). https://doi.org/10.1007/s42770-021-00655-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00655-4

Keywords

Navigation