Skip to main content

Advertisement

Log in

Diversity and community structure of ectomycorrhizal fungi in Pinus thunbergii coastal forests bordering the Yellow Sea of China

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Ectomycorrhizas play a fundamental role in the function of forest ecosystems, being essential for plant nutrition absorption and soil quality. Many afforestation and reforestation programmes have begun to recover and maintain coastal forests in China, using pine species including Pinus thunbergii. We investigated the ectomycorrhizal colonization status of P. thunbergii in coastal pine forests of the Yellow Sea of China. We identified a total of 53 ectomycorrhizal fungal species in 74 soil samples collected from three sites and found that Thelephoraceae (10 spp.) and Russulaceae (8 spp.) were the most species-rich ectomycorrhizal fungal lineages. Russula sp. 1 was the most abundant species, accounting for 15.3% of the total ectomycorrhizal tips identified. Most of the remaining species were rare. At this small scale, host identity had no significant effect on the ectomycorrhizal fungal community composition (A = 0.036, P = 0.258), but sampling sites did (A = 0.135, P = 0.041). In addition, Na+ and K+ content and soil pH had significant effects on the ectomycorrhizal fungal community. The ectomycorrhizal fungal community associated with different host plants will become an important new direction for research, as ectomycorrhiza may have the potential to improve host capacity to establish in salt-stressed environments. This will provide a theoretical basis and technical support for saline soil reforestation and rehabilitation using pine species with compatible, native ectomycorrhizal fungi in Yellow Sea coastal areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, Cambridge

    Google Scholar 

  2. Tedersoo L, Bahram M, Toots M, Diédhiou AG, Henkel TW, Kjøller R, Morris M, Nara K, Nouhra E, Peay KG, Põlme S, Ryberg M, Smith ME, Kõljalg U (2012) Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol Ecol 21:4160–4170

    Article  PubMed  Google Scholar 

  3. Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A (2014) Global diversity and geography of soil fungi. Science 346:1256688

    Article  PubMed  Google Scholar 

  4. Wen Z, Murata M, Xu Z, Chen Y, Nara K (2015) Ectomycorrhizal fungal communities on the endangered Chinese Douglas-fir (Pseudotsuga sinensis) indicating regional fungal sharing over-rides host conservatism across geographical regions. Plant Soil 387(1):189–199

    Article  CAS  Google Scholar 

  5. Murata M, Kanetani S, Nara K (2017) Ectomycorrhizal fungal communities in endangered Pinus amamiana forests. PLoS One 12(12):e0189957

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang YL, Gao C, Chen L, Ji NN, Wu BW, Li XC, Lü PP, Zheng Y, Guo LD (2019) Host plant phylogeny and geographic distance strongly structure -associated ectomycorrhizal fungal communities in Chinese secondary forest ecosystems. FEMS Microbiol Ecol 95:fiz037

    Article  CAS  PubMed  Google Scholar 

  7. Tedersoo L, Suvi T, Beaver K, Kõljalg U (2007) Ectomycorrhizal fungi of the Seychelles: diversity patterns and host shifts from the native Vateriopsis seychellarum (Dipterocarpaceae) and Intsia bijuga (Caesalpiniaceae) to the introduced Eucalyptus robusta (Myrtaceae), but not Pinus caribaea (Pinaceae). New Phytol 175:321–333

    Article  CAS  PubMed  Google Scholar 

  8. Murata M, Kinoshita A, Nara K (2013) Revisiting the host effect on ectomycorrhizal fungal communities: implications from host–fungal associations in relict Pseudotsuga japonica forests. Mycorrhiza 23:641–653

    Article  PubMed  Google Scholar 

  9. Richard F, Millot S, Gardes M, Selosse MA (2005) Diversity and specificity of ectomycorrhizal fungi retrieved from an old- growth Mediterranean forest dominated by Quercus ilex. New Phytol 166(3):1011–1023

    Article  CAS  PubMed  Google Scholar 

  10. Diedhiou AG, Selosse MA, Galiana A, Diabate M, Dreyfus B, Ba AM, de Faria SM, Bena G (2010) Multi-host ectomycorrhizal fungi are predominant in a Guinean tropical rainforest and shared between canopy trees and seedlings. Environ Microbiol 12(8):2219–2232

    CAS  PubMed  Google Scholar 

  11. Kataoka R, Taniguchi T, Ooshima H, Futai K (2008) Comparison of the bacterial communities established on the mycorrhizae formed on Pinus thunbergii root tips by eight species of fungi. Plant Soil 304:267–275

    Article  CAS  Google Scholar 

  12. Obase K, Lee JK, Lee SY, Chun KW (2011) Diversity and community structure of ectomycorrhizal fungi in Pinus thunbergii coastal forests in the eastern region of Korea. Mycoscience 52:383–339

    Article  Google Scholar 

  13. Taniguchi T, Kanzaki N, Tamai S, Yamanaka N, Futai K (2007) Does ectomycorrhizal fungi community structure vary along a Japanese black pine (Pinus thunbergii) to black locust (Robinia pseudoacacia) gradient. New Phytol 173:322–334

    Article  PubMed  Google Scholar 

  14. Matsuda Y, Noguchi Y, Ito S (2009) Ectomycorrhizal fungal community of naturally regenerated Pinus thunbergii seedlings in a coastal pine forest. J For Res 14:335–341

    Article  CAS  Google Scholar 

  15. Obase K, Cha JY, Lee JK, Lee SY, Lee JH, Chun KW (2009a) Ectomycorrhizal fungal communities associated with Pinus thunbergii in the eastern coastal pine forests of Korea. Mycorrhiza 20:39–49

    Article  PubMed  Google Scholar 

  16. Courty PE, Pritsch K, Schloter M, Hartmann A, Garbaye J (2005) Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytol 167:309–319

    Article  CAS  PubMed  Google Scholar 

  17. Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J (2017) Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355:181–184

    Article  CAS  PubMed  Google Scholar 

  18. Jarvis S, Woodward S, Alexander IJ, Taylor AFS (2013) Regional scale gradients of climate and nitrogen deposition drive variation in ectomycorrhizal fungal communities associated with native Scots pine. Glob Chang Biol 19:1688–1696

    Article  CAS  PubMed  Google Scholar 

  19. Morgado LN, Semenova TA, Welker JM, Walker MD, Smets E, Geml J (2015) Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in arctic Alaska. Glob Chang Biol 21:959–972

    Article  PubMed  Google Scholar 

  20. Nickel UT, Weikl F, Kerner R, Schäfer C, Kallenbach C, Munch JC, Pritsch K (2017) Quantitative losses vs. qualitative stability of ectomycorrhizal community responses to 3 years of experimental summer drought in a beech–spruce forest. Glob Chang Biol:e560–e576

  21. Terrer C, Vicca S, Hungate BA, Phillips RP, Prentice IC (2016) Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353:72–74

    Article  CAS  PubMed  Google Scholar 

  22. Bahram M, Põlme S, Kõljalg U, Zarre S, Tedersoo L (2012) Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytol 193:465–473

    Article  PubMed  Google Scholar 

  23. Miyamoto Y, Sakai A, Hattori M, Nara K (2015) Strong effect of climate on ectomycorrhizal fungal composition: evidence from range overlap between two mountains. ISME J 9:1870–1879

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nara K, Nakaya H, Wu B, Zhou Z, Hogetsu T (2003) Underground primary succession of ectomycorrhizal fungi in a volcanic desert on Mount Fuji. New Phytol 159:743–756

    Article  CAS  PubMed  Google Scholar 

  25. Twieg BD, Durall DM, Simard SW (2007) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176(2):437–447

    Article  PubMed  Google Scholar 

  26. Dickie IA, Richardson SJ, Wiser SK (2009) Ectomycorrhizal fungal communities and soil chemistry in harvested and unharvested temperate Nothofagus rainforests. Can J For Res 39(6):1069–1079

    Article  CAS  Google Scholar 

  27. Põlme S, Bahram M, Yamanaka T, Nara K, Dai YC, Grebenc T, Kraigher H, Toivonen M, Wang P, Matsuda Y, Naadel T, Kennedy PG, Kõljalg U, Tedersoo L (2013) Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. New Phytol 198(4):1239–1249

    Article  PubMed  Google Scholar 

  28. Roy M, Rochet J, Manzi S, Jargeat P, Gryta H, Moreau PA, Gardes M (2013) What determines Alnus-associated ectomycorrhizal community diversity and specificity? A comparison of host and habitat effects at a regional scale. New Phytol 198:1228–1238

    Article  CAS  PubMed  Google Scholar 

  29. Velmala SM, Rajala T, Haapanen M, Taylor AFS, Pennanen T (2013) Genetic host-tree effects on the ectomycorrhizal community and root characteristics of Norway spruce. Mycorrhiza 23:21–33

    Article  CAS  PubMed  Google Scholar 

  30. Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618

    Article  CAS  PubMed  Google Scholar 

  31. Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505:543–545

    Article  CAS  PubMed  Google Scholar 

  32. Lilleskov EA, Fahey TJ, Horton TR, Lovett GM (2002) Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104–115

    Article  Google Scholar 

  33. Cox F, Barsoum N, Lilleskov EA, Bidartondo MI (2010) Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Ecol Lett 13:1103–1113

    Article  PubMed  Google Scholar 

  34. Toljander JF, Eberhardt U, Toljander YK, Leslie RP, Taylor AFS (2006) Species composition of an ectomycorrhizal fungal community along a local nutrient gradient in boreal forest. New Phytol 170(4):873–884

    Article  CAS  PubMed  Google Scholar 

  35. Huang J, Nara K, Zong K, Wang J, Xue S, Peng K, Shen Z, Lian C (2014) Ectomycorrhizal fungal communities associated with Masson pine (Pinus massoniana) and white oak (Quercus fabri) in a manganese mining region in Hunan Province, China. Fungal Ecol 9:1–10

    Article  Google Scholar 

  36. Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    Article  PubMed  Google Scholar 

  37. Krpata D, Peintner U, Langer I, Fitz WJ, Schweiger P (2008) Ectomycorrhizal communities associated with Populus tremula growing on a heavy metal contaminated site. Mycol Res 112:1069–1079

    Article  PubMed  Google Scholar 

  38. Baier R, Ingenhaag J, Blaschke H, Göttlein A, Agerer R (2006) Vertical distribution of an ectomycorrhizal community in upper soil horizons of a young Norway spruce (Picea abies [L.] Karst.) stand of the Bavarian Limestone Alps. Mycorrhiza 16:197–206

    Article  PubMed  Google Scholar 

  39. Gebhardt S, Neubert K, Wöllecke J, Münzenberger B, Hüttl RF (2007) Ectomycorrhiza communities of red oak (Quercus rubra L.) of different age in the Lusatian lignite mining district, East Germany. Mycorrhiza 17:279–290

    Article  CAS  PubMed  Google Scholar 

  40. Matsuda Y, Sugiyama F, Nakanishi K, Ito S (2006) Effects of sodium chloride on growth of ectomycorrhizal fungal isolates in culture. Mycoscience 47:212–217

    Article  CAS  Google Scholar 

  41. Di Pietro M, Churin JL, Garbaye J (2007) Differential ability of ectomycorrhizas to survive drying. Mycorrhiza 17:547–550

    Article  PubMed  Google Scholar 

  42. Wen ZG, Shi L, Tang YZ, Shen ZG, Xia Y, Chen YH (2017) Effects of Pisolithus tinctorius and Cenococcum geophilum inoculation on pine in copper-contaminated soil to enhance phytoremediation. Int J Phytoremediat 19:387–394

    Article  CAS  Google Scholar 

  43. Arai H, Tamai Y, Yajima T, Obase K, Miyamoto T (2017) Ectomycorrhizal fungal communities associated with Quercus dentata in a coastal broadleaf forest. Mycosphere 8(4):561–567

    Article  Google Scholar 

  44. Smith ME, Douhan GW, Fremier AK, Rizzo DM (2009) Are true multihost fungi the exception or the rule? Dominant ectomycorrhizal fungi on Pinus sabiniana differ from those on co-occurring Quercus species. New Phytol 182:295–299

    Article  PubMed  Google Scholar 

  45. Lang C, Seven J, Polle A (2011) Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European forest. Mycorrhiza 21(4):297–308

    Article  PubMed  Google Scholar 

  46. Ishida TA, Nara K, Ma S, Takano T, Liu S (2009) Ectomycorrhizal fungal community in alkaline-saline soil in northeastern China. Mycorrhiza 19(5):329–335

    Article  PubMed  Google Scholar 

  47. Hrynkiewicz K, Szymańska S, Piernik A, Thiem D (2015) Ectomycorrhizal community structure of Salix and Betula spp. at a saline site in Central Poland in relation to the seasons and soil parameters. Water Air Soil Pollut 226(4):99

    Article  PubMed  PubMed Central  Google Scholar 

  48. Thiem D, Piernik A, Hrynkiewicz K (2018) Ectomycorrhizal and endophytic fungi associated with Alnus glutinosa growing in a saline area of central Poland. Symbiosis 75:17–28

    Article  PubMed  Google Scholar 

  49. Zwiazek JJ, Equiza MA, Karst J, Senorans J, Wartenbe M, Calvo-Polanco M (2019) Role of urban ectomycorrhizal fungi in improving the tolerance of lodgepole pine (Pinus contorta) seedlings to salt stress. Mycorrhiza 29:303–312

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded in part by the National Natural Science Foundation of China (31800525); the Science Foundation of Jiangsu Province, China (BK20170469); the Forestry Science and Technology Innovation and Promotion Project of Jiangsu province (LYKJ(2018)37); the earmarked fund for Jiangsu Agricultural Industry Technology System [2019]228; and the special project of science and technology in North Jiangsu (SZ-YC2018060).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yahua Chen or Zhugui Wen.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Responsible Editor: Lucy Seldin

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Xing, J., Zhu, X. et al. Diversity and community structure of ectomycorrhizal fungi in Pinus thunbergii coastal forests bordering the Yellow Sea of China. Braz J Microbiol 52, 801–809 (2021). https://doi.org/10.1007/s42770-021-00486-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00486-3

Keywords

Navigation