Skip to main content

Advertisement

Log in

Microbial communities in anaerobic digesters change over time and sampling depth

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Anaerobic digestion (AD) is a process resulting from the anaerobic metabolism of specific microorganisms that produce an eco-friendly type of energy and a stabilized soil fertilizer. We described the microbial communities and their changes in three depths of BioKöhler® biodigester, fed with cattle manure for 18 days, under anaerobic incubation at the psychrophilic temperature range (~ 20 °C). During the experiment, the maximum methane content in the raw biogas was 79.9%. Non-metric multidimensional scaling (MDS) showed significant differences among microbial communities in the bottom, medium, and upper depths. Considering all the periods of incubation, the microbial communities changed until the eighth day, and they remained stable from eighth to seventeenth days. Bacteroidetes, Firmicutes, and Synergistetes were the most abundant phyla in samples, representing approximately 41% of the total OTUs. The relative abundance of the phyla Euryarchaeota, Actinobacteria, Firmicutes, and Verrucomicrobia changed from bottom to medium sampling points. Moreover, Crenarchaeota differed in frequencies from medium to upper, and Acidobacteria from bottom to upper samples. Lentisphaerae, Chloroflexi, and LD1 were different solely at the bottom, whereas OP9 and Tenericutes only in the medium. Psychrophilic AD performed in this work removed pathogens like Salmonella and Escherichia, as observed at the digestate analyzed. This type of treatment of raw manure besides producing eco-friendly energy efficiently also generates a stabilized and safe biomass that can be used as fertilizer in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ziemiński K, Frac M (2012) Methane fermentation process as anaerobic digestion of biomass: transformations, stages and microorganisms. Afr J Biotechnol 11:4127–4139. https://doi.org/10.5897/AJBX11.054

    Article  CAS  Google Scholar 

  2. Jönsson S, Ejlertsson J, Svensson BH (2003) Behaviour of mono- and diesters of o-phthalic acid in leachates released during digestion of municipal solid waste under landfill conditions. Adv Environ Res 7:429–440. https://doi.org/10.1016/S1093-0191(02)00015-1

    Article  Google Scholar 

  3. Wilkie AC, Castro HF, Cubinski KR, Owens JM, Yan SC (2004) Fixed-film anaerobic digestion of flushed dairy manure after primary treatment: wastewater production and characterisation. Biosyst Eng 89:457–471. https://doi.org/10.1016/j.biosystemseng.2004.09.002

    Article  Google Scholar 

  4. Schievano A, D’Imporzano G, Adani F (2009) Substituting energy crops with organic wastes and agro-industrial residues for biogas production. J Environ Manag 90:2537–2541. https://doi.org/10.1016/j.jenvman.2009.01.013

    Article  CAS  Google Scholar 

  5. Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35:1633–1645. https://doi.org/10.1016/j.biombioe.2011.02.033

    Article  CAS  Google Scholar 

  6. Konrad O, Bezama AB, Prade T, Backes GM, Oechner H (2016) Enhancing the analytical capacity for biogas development in Brazil: assessment of an original measurement system for low biogas flow rates out of agricultural biomass residues. Eng Agríc 36:792–798. https://doi.org/10.1590/1809-4430-Eng.Agric.v36n5p792-798/2016

  7. Börjesson P, Berglund M (2006) Environmental systems analysis of biogas systems-part I: fuel-cycle emissions. Biomass Bioenergy 30:469–485. https://doi.org/10.1016/j.biombioe.2005.11.014

    Article  CAS  Google Scholar 

  8. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860. https://doi.org/10.1007/s00253-009-2246-7

    Article  CAS  PubMed  Google Scholar 

  9. Moon YH, Iakiviak M, Bauer S et al (2011) Biochemical analyses of multiple endoxylanases from the rumen bacterium Ruminococcus albus 8 and their synergistic activities with accessory hemicellulose-degrading enzymes. Appl Environ Microbiol 77:5157–5169. https://doi.org/10.1128/AEM.00353-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhu B, Zhang R, Gikas P, Rapport J, Jenkins B, Li X (2010) Biogas production from municipal solid wastes using an integrated rotary drum and anaerobic-phased solids digester system. Bioresour Technol 101:6374–6380. https://doi.org/10.1016/j.biortech.2010.03.075

    Article  CAS  PubMed  Google Scholar 

  11. Li Y, Hua D, Zhang J, Zhao Y, Xu H, Liang X, Zhang X (2013) Volatile fatty acids distribution during acidogenesis of algal residues with pH control. World J Microbiol Biotechnol 29:1067–1073. https://doi.org/10.1007/s11274-013-1270-z

    Article  CAS  PubMed  Google Scholar 

  12. Christy PM, Gopinath LR, Divya D (2014) A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew Sust Energ Rev 34:167–173. https://doi.org/10.1016/j.rser.2014.03.010

    Article  CAS  Google Scholar 

  13. Westerholm M, Isaksson S, Karlsson Lindsjö O, Schnürer A (2018) Microbial community adaptability to altered temperature conditions determines the potential for process optimization in biogas production. Appl Energy 226:838–848. https://doi.org/10.1016/j.apenergy.2018.06.045

    Article  CAS  Google Scholar 

  14. Fang Z, Li X, Hu H (2011) Gas mixture enhance coalbed methane recovery technology: pilot tests. Energy Procedia 4:2144–2149. https://doi.org/10.1016/j.egypro.2011.02.099

    Article  CAS  Google Scholar 

  15. Marcos A, Al-Kassir A, López F, Cuadros F, Brito P (2012) Environmental treatment of slaughterhouse wastes in a continuously stirred anaerobic reactor: effect of flow rate variation on biogas production. Fuel Process Technol 103:178–182. https://doi.org/10.1016/j.fuproc.2011.12.035

    Article  CAS  Google Scholar 

  16. Granada CE, Hasan C, Marder M, Konrad O, Vargas LK, Passaglia LMP, Giongo A, de Oliveira RR, Pereira LM, Sperotto RA (2018) Biogas from slaughterhouse wastewater anaerobic digestion is driven by the archaeal family Methanobacteriaceae and bacterial families Porphyromonadaceae and Tissierellaceae. Renew Energy 118:840–846. https://doi.org/10.1016/j.renene.2017.11.077

    Article  CAS  Google Scholar 

  17. Tian G, Yang B, Dong M, Zhu R, Yin F, Zhao X, Wang Y, Xiao W, Wang Q, Zhang W, Cui X (2018) The effect of temperature on the microbial communities of peak biogas production in batch biogas reactors. Renew Energy 123:15–25. https://doi.org/10.1016/j.renene.2018.01.119

    Article  CAS  Google Scholar 

  18. Náthia-Neves G, Berni M, Dragone G, Mussato SI, Forster-Carneiro T (2018) Anaerobic digestion process: technological aspects and recent developments. Int J Environ Sci Technol 15:2033–2046. https://doi.org/10.1007/s13762-018-1682-2

    Article  CAS  Google Scholar 

  19. Im S, Petersen SO, Lee D, Kim DH (2020) Effects of storage temperature on CH4 emissions from cattle manure and subsequent biogas production potential. Waste Manag 101:35–43. https://doi.org/10.1016/j.wasman.2019.09.036

    Article  CAS  PubMed  Google Scholar 

  20. Qi G, Pan Z, Sugawa Y, Andriamanohiarisoamanana FJ, Yamashiro T, Iwasaki M, Kawamoto K, Ihara I, Umetsu K (2018) Comparative fertilizer properties of digestates from mesophilic and thermophilic anaerobic digestion of dairy manure: focusing on plant growth promoting bacteria (PGPB) and environmental risk. J Mater Cycles Waste Manag 20:1448–1457. https://doi.org/10.1007/s10163-018-0708-7

    Article  CAS  Google Scholar 

  21. Coelho JJ, Prieto ML, Dowling S, Hennessy A, Casey I, Woodcock T, Kennedy N (2018) Physical-chemical traits, phytotoxicity and pathogen detection in liquid anaerobic digestates. Waste Manag 78:8–15. https://doi.org/10.1016/j.wasman.2018.05.017

    Article  CAS  PubMed  Google Scholar 

  22. Wei S, Guo Y (2018) Comparative study of reactor performance and microbial community in psychrophilic and mesophilic biogas digesters under solid state condition. J Biosci Bioeng 125:543–551. https://doi.org/10.1016/j.jbiosc.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  23. Kashyap DR, Dadhich KS, Sharma SK (2003) Biomethanation under psychrophilic conditions: a review. Bioresour Technol 87:147–153. https://doi.org/10.1016/S0960-8524(02)00205-5

    Article  CAS  PubMed  Google Scholar 

  24. Choudhary A, Kumar A, Govil T, Gorky RKS, Kumar S (2020) Sustainable production of biogas in large bioreactor under psychrophilic and mesophilic conditions. J Environ Eng (United States) 146:1–10. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001645

    Article  Google Scholar 

  25. Yao Y, Huang G, An C, Chen X, Zhang P, Xin X, Shen J, Agnew J (2020) Anaerobic digestion of livestock manure in cold regions: technological advancements and global impacts. Renew Sust Energ Rev 119:109494. https://doi.org/10.1016/j.rser.2019.109494

    Article  Google Scholar 

  26. Seghezzo L, Cuevas CM, Trupiano AP, Guerra RG, González SM, Zeeman G, Lettinga G (2006) Stability and activity of anaerobic sludge from UASB reactors treating sewage in subtropical regions. Water Sci Technol 54:223–229. https://doi.org/10.2166/wst.2006.509

    Article  CAS  PubMed  Google Scholar 

  27. Giménez JB, Martí N, Ferrer J, Seco A (2012) A methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: evaluation of methane losses with the effluent. Bioresour Technol 118:67–72. https://doi.org/10.1016/j.biortech.2012.05.019

    Article  CAS  PubMed  Google Scholar 

  28. Martí-Herrero J, Soria-Castellón G, Diaz-de-Basurto A, Alvarez R, Chemisana D (2019) Biogas from a full scale digester operated in psychrophilic conditions and fed only with fruit and vegetable waste. Renew Energy 133:676–684. https://doi.org/10.1016/j.renene.2018.10.030

    Article  CAS  Google Scholar 

  29. van Lier JB, van der Zee FP, Frijters CTMJ, Ersahin ME (2015) Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment. Rev Environ Sci Biotechnol 14:681–702. https://doi.org/10.1007/s11157-015-9375-5

    Article  CAS  Google Scholar 

  30. APHA Awwa WEF (2012) Standard methods for evaluation of water and wastewater, twenty-second ed., American Public Health Association, American Water Works Association, Water Environment Federation

  31. Zhou J, Bruns A, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917

    Article  CAS  PubMed  Google Scholar 

  33. Schmiede R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864. https://doi.org/10.1093/bioinformatics/btr026

    Article  CAS  Google Scholar 

  34. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  35. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicons reads. Nat Methods 10:996–1000

    Article  CAS  PubMed  Google Scholar 

  36. Cole JR et al (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:633–642. https://doi.org/10.1093/nar/gkt1244

    Article  CAS  Google Scholar 

  37. Caporaso JG et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  39. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  40. Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistic software package for education and data analysis. Paleontol Electron 4:1–9

    Google Scholar 

  41. Oosterkamp MJ, Bauer S, Ibáñez AB, Méndez-Garcíaa C, Hong PY, Canna I, Mackie RI (2019) Identification of methanogenesis and syntrophy as important microbial metabolic processes for optimal thermophilic anaerobic digestion of energy cane thin stillage. Bioresour Technol Reports 7:100254. https://doi.org/10.1016/j.biteb.2019.100254

  42. Lei Y, Xie C, Wang X, Fang Z, Huang Y, Cao S, Liu B (2020) Thermophilic anaerobic digestion of Arundo donax cv. Lvzhou no. 1 for biogas production: structure and functional analysis of microbial communities. Bioenerg Res. https://doi.org/10.1007/s12155-020-10105-y

  43. Vindis P, Mursec B (2009) The impact of mesophilic and thermophilic anaerobic digestion on biogas production. J Achiev Mater Manuf Eng 36:192–198

  44. Axaopoulos P, Panagakis P (2003) Energy and economic analysis of biogas heated livestock buildings. Biomass Bioenergy 24:239–248

    Article  Google Scholar 

  45. Moset V, Poulsen M, Wahid R, Hojberg O, Moller HB (2015) Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology. Microb Biotechnol 8:787–800. https://doi.org/10.1111/1751-7915.12271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Han D, Lee CY, Chang SW, Kim DJ (2017) Enhanced methane production and wastewater sludge stabilization of a continuous full scale thermal pretreatment and thermophilic anaerobic digestion. Bioresour Technol 245:1162–1167. https://doi.org/10.1016/j.biortech.2017.08.108

    Article  CAS  PubMed  Google Scholar 

  47. Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7:173–190. https://doi.org/10.1007/s11157-008-9131-1

    Article  CAS  Google Scholar 

  48. Insam H, Gómez-Brandón M, Ascher J (2015) Manure-based biogas fermentation residues - friend or foe of soil fertility? Soil Biol Biochem 84:1–14. https://doi.org/10.1016/j.soilbio.2015.02.006

    Article  CAS  Google Scholar 

  49. Dohrmann AB, Baumert S, Klingebiel L, Weiland P, Tebbe CC (2011) Bacterial community structure in experimental methanogenic bioreactors and search for pathogenic clostridia as community members. Appl Microbiol Biotechnol 89:1991–2004. https://doi.org/10.1007/s00253-010-2955-y

    Article  CAS  PubMed  Google Scholar 

  50. Massé D, Gilbert Y, Topp E (2011) Pathogen removal in farm-scale psychrophilic anaerobic digesters processing swine manure. Bioresour Technol 102:641–646. https://doi.org/10.1016/j.biortech.2010.08.020

    Article  CAS  PubMed  Google Scholar 

  51. Limam RD, Chouari R, Mazéas L, Wu TD, Li T, Grossin-Debattista J, Guerquin-Kem JL, Saidi M, Landoulsi A, Sghir A, Bouchez T (2014) Members of the uncultured bacterial candidate division WWE1 are implicated in anaerobic digestion of cellulose. MicrobiologyOpen 3:157–167. https://doi.org/10.1002/mbo3.144

  52. Kampmann K, Ratering S, Kramer I, Schmidt M, Zerr W, Schnell S (2012) Unexpected stability of Bacteroidetes and Firmicutes communities in laboratory biogas reactors fed with different defined substrates. Appl Environ Microbiol 78:2106–2119. https://doi.org/10.1128/AEM.06394-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Scherr KE, Lundaa T, Klose V, Bochmann G, Loibner AP (2012) Changes in bacterial communities from anaerobic digesters during petroleum hydrocarbon degradation. J Biotechnol 157:564–572. https://doi.org/10.1016/j.jbiotec.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  54. Dieser M, Broemsen ELJE, Cameron KA, King GM, Achberger A, Choquette K, Hagedorn B, Sletten R, Junge K, Christner BC (2014) Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland ice sheet. ISME J 8:2305–2316. https://doi.org/10.1038/ismej.2014.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wüst PK, Horn MA, Drake HL (2011) Clostridiaceae and Enterobacteriaceae as active fermenters in earthworm gut content. ISME J 5:92–106. https://doi.org/10.1038/ismej.2010.99

    Article  CAS  PubMed  Google Scholar 

  56. Cheng L, Shi S, Li Q, Chen J, Zhang H, Lu Y (2014) Progressive degradation of crude oil n-alkanes coupled to methane production under mesophilic and thermophilic conditions. PLoS One 9. https://doi.org/10.1371/journal.pone.0113253

  57. Liu C, Sun D, Zhao Z, Dang Y, Holmes DE (2019) Methanothrix enhances biogas upgrading in microbial electrolysis cell via direct electron transfer. Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.121877

  58. Pilarski G, Kyncl M, Stegenta S, Piechota G (2019) Emission of biogas from sewage sludge in psychrophilic conditions. Waste Biomass Valor. https://doi.org/10.1007/s12649-019-00707-9

  59. Banach A, Ciesielski S, Bacza T, Pieczykolan M, Ziembińska-Buczyńska A (2019) Microbial community composition and methanogens’ biodiversity during a temperature shift in a methane fermentation chamber. Environ Technol 40:3252–3263. https://doi.org/10.1080/09593330.2018.1468490

    Article  CAS  PubMed  Google Scholar 

  60. Schmidt T, Harris P, Lee S, McCabe BK (2019) Investigating the impact of seasonal temperature variation on biogas production from covered anaerobic lagoons treating slaughterhouse wastewater using lab scale studies. J Environ Chem Eng 7:103077. https://doi.org/10.1016/j.jece.2019.103077

    Article  CAS  Google Scholar 

  61. Connaughton S, Collins G, Flaherty V (2006) Psychrophilic and mesophilic anaerobic digestion of brewery effluent: a comparative study. Water Res 40:2503–2510. https://doi.org/10.1016/j.watres.2006.04.044

    Article  CAS  PubMed  Google Scholar 

  62. Shukla PN, Pandey KD, Mishra VK (2013) Environmental determinants of soil methane oxidation and methanotrophs. Crit Rev Environ Sci Technol 43:1945–2011. https://doi.org/10.1080/10643389.2012.672053

    Article  CAS  Google Scholar 

  63. Qi G, Pan Z, Fetra J, Andriamanohiarisoamanana F, Yamashiro T, Iwasaki M, Kawamoto K, Umetsu K (2017) Isolation and characterization of plant growth promoting bacteria (PGPB) from anaerobic digestate and their effect on common wheat (Triticum aestivum) seedling growth. Int J Environ Agric Res 3:46–52. https://doi.org/10.25125/agriculture-journal-ijoear-nov-2017-11

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank High Performance Computing Lab - LAD/PUCRS for allowing access to run the high-throughput sequences analyses. Luiz Gustavo A. Borges thanks PEGA/PUCRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille E. Granada.

Additional information

Responsible Editor: Melissa Fontes Landell

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 11 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giongo, A., Granada, C.E., Borges, L.G.A. et al. Microbial communities in anaerobic digesters change over time and sampling depth. Braz J Microbiol 51, 1177–1190 (2020). https://doi.org/10.1007/s42770-020-00272-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00272-7

Keywords

Navigation