Skip to main content
Log in

Sequence analysis of nucleoprotein gene reveals the co-circulation of lineages and sublineages of rabies virus in herbivorous in Rio Grande do Sul state, Brazil

  • Veterinary Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

A Correction to this article was published on 31 March 2020

This article has been updated

Abstract

An unprecedented outbreak of rabies occurred in Rio Grande do Sul state (RS) from 2012 onward, resulting in thousands of bovine deaths, important economic losses, and posing risk to human health. This article describes a genetic analysis of 145 rabies viruses (RABV) recovered from herbivorous from RS between 2012 and 2017, based on partial sequence analysis of the nucleoprotein (N) gene. High nucleotide (nt) identity (95.5 to 100%) and amino acid (aa) similarity (96.7 to 100%) were observed among the analyzed sequences. These sequences displayed a high sequence nt identity/aa similarity with bovine RABV sequences (96.4–97.9%; 98.1–100%, respectively) and vampire bat RABV sequences (96.3–97.5%; 97.8–99.5%). Phylogenetic analyzes based on the N sequence allowed for the segregation of viruses into two distinct clusters. Cluster 1 comprised RABV sequences covering the whole studied period, whereas cluster 2 grouped a lower number of viruses from 2013, 2014, 2015, to 2017. In some cases, viruses obtained from the same region within a short period of time grouped to distinct clusters or sub-clusters, indicating the co-circulation of distinct virus lineages in these outbreaks. The segregation into sub-clusters was also observed for viral sequences obtained from the same region at different times, indicating the involvement of distinct viruses. In summary, partial sequence analyses revealed a high conservation of N protein and the circulation of two lineages and different sublineages of RABV in the region. In addition, our results confirm the suitability of N gene to study the genetic relationships among RABV isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 31 March 2020

    Discussion section, 9th paragraph.

References

  1. World Health Organization (2005) WHO expert consultation on rabies: first report. https://apps.who.int/iris/handle/10665/43262. Accessed 19 July 2019

  2. International Committee on the Taxonomy of Viruses (2018). Virus Taxonomy: 2018b Release. https://talk.ictvonline.org/taxonomy/. Accessed 19 July 2019

  3. International Committee on the Taxonomy of Viruses. (2011) ICTV 9th Report. https://talk.ictvonline.org/ictv-reports/ictv_9th_report/negative-sense-rna-viruses-2011/w/negrna_viruses/201/rhabdoviridae. Accessed 18 July 2019

  4. Rodriguez LL, Roehe PM, Batista HBCR, Kurath G (2017) Rhabdoviridae. In: Flores EF (ed) Virologia veterinária: virologia geral e doenças víricas, 3rd edn. Universidade Federal de Santa Maria, Santa Maria, pp 848–880

    Google Scholar 

  5. Batista HBCR, Caldas E, Junqueira DM, Teixeira TF, Ferreira JC, Silva JR, Rosa JCA, Roehe PM (2009) Canine rabies in Rio Grande do Sul caused by an insectivorous bat rabies virus variant. Acta Sci Vet 37(4):371–374

    Article  Google Scholar 

  6. Castilho JG, Canello FM, Scheffer KC, Achkar SM, Carrieri ML, Kotait I (2008) Antigenic and genetic characterization of the first rabies virus isolated from the bat Eumops perotis in Brazil. Rev Inst Med Trop São Paulo 50(2):95–99. https://doi.org/10.1590/S0036-46652008000200006

    Article  PubMed  Google Scholar 

  7. David D, Hughes GJ, Yakobson BA, Davidson I, Un H, Aylan O, Kuzmin IV, Rupprecht CE (2007) Identification of novel canine rabies virus clades in the Middle East and North Africa. J Gen Virol 88(3):967–980. https://doi.org/10.1099/vir.0.82352-0

    Article  CAS  PubMed  Google Scholar 

  8. Ito M, Itou T, Sakai T, Santos MFC, Arai YT, Takasaki T, Kurane I, Ito FH (2001) Detection of rabies virus RNA isolated from several species of animals in Brazil by RT-PCR. J Vet Med Sci 63(12):1309–1313. https://doi.org/10.1292/jvms.63.1309

    Article  CAS  PubMed  Google Scholar 

  9. Ito M, Yohko T, Itou AT, Sakai T, Ito FH, Takasaki T, Kurane I (2001) Genetic characterization and geographic distribution of rabies virus isolates in Brazil: identification of two reservoirs, dogs and vampire bats. Virology 284(2):214–222. https://doi.org/10.1006/viro.2000.0916

    Article  CAS  PubMed  Google Scholar 

  10. Ito M, Itou T, Shoji Y, Sakai T, Ito FH, Arai YT, Takasaki T, Kurane I (2003) Discrimination between dog-related and vampire bat-related rabies viruses in Brazil by strain-specific reverse transcriptase-polymerase chain reaction and restriction fragment length polymorphism analysis. J Clin Virol 26(3):317–330. https://doi.org/10.1016/S1386-6532(02)00048-3

    Article  CAS  PubMed  Google Scholar 

  11. Kobayashi Y, Sato G, Shoji Y, Sato T, Itou T, Cunha EMS, Samara SI, Carvalho AAB, Nociti DP, Ito FH, Sakai T (2005) Molecular epidemiological analysis of bat rabies viruses in Brazil. J Vet Med Sci 67(7):647–652. https://doi.org/10.1292/jvms.67.647

    Article  CAS  PubMed  Google Scholar 

  12. Kobayashi Y, Ogawa A, Sato G, Sato T, Itou T, Samara SI, Carvalho AAB, Nociti DP, Ito FH, Sakai T (2006) Geographical distribution of vampire bat-related cattle rabies in Brazil. J Vet Med Sci 68(10):1097–1100. https://doi.org/10.1292/jvms.68.1097

    Article  CAS  PubMed  Google Scholar 

  13. Kobayashi Y, Sato G, Mochizuki N, Hirano S, Itou T, Carvalho AAB, Albas A, Santos HP, Ito FH, Sakai T (2008) Molecular and geographic analyses of vampire bat-transmitted cattle rabies in Central Brazil. BMC Res Notes 4(44):1–9. https://doi.org/10.1186/1746-6148-4-44

    Article  Google Scholar 

  14. Mochizuki N, Kawasaki H, Silva MLCR, Afonso JAB, Itou T, Ito FH, Sakai T (2012) Molecular epidemiology of livestock rabies viruses isolated in the northeastern Brazilian states of Paraíba and Pernambuco from 2003–2009. BMC Res Notes 5:32. https://doi.org/10.1186/1756-0500-5-32

  15. Queiroz LH, Favoretto SR, Cunha EMS, Campos ACA, Lopes MC, Carvalho C, Iamamoto K, Araújo DB, Venditti LLR, Ribeiro ES, Pedro WA, Durigon EL (2012) Rabies in Southeast Brazil: a change in the epidemiological pattern. Arch Virol 157(1):93–105. https://doi.org/10.1007/s00705-011-1146-1

    Article  CAS  PubMed  Google Scholar 

  16. Romijn PC, Heide RVD, Cattaneo CAM, Silva RCF, Van Der Poel WHM (2003) Study of lyssaviruses of bat origin as a source of rabies for other animal species in the state of Rio de Janeiro, Brazil. Am J Trop Med Hyg 69(1):81–86

    Article  PubMed  Google Scholar 

  17. Schaefer R, Batista HBR, Franco AC, Rijsewijk FAM, Roehe PM (2005) Studies on antigenic and genomic properties of Brazilian rabies virus isolates. Vet Microbiol 107:161–170. https://doi.org/10.1016/j.vetmic.2005.01.023

    Article  CAS  PubMed  Google Scholar 

  18. Banyard AC, Hayman D, Johnson N, McElhinney L, Fooks AR (2011) Bats and lyssaviruses. Adv Virus Res 79:239–289. https://doi.org/10.1016/B978-0-12-387040-7.00012-3

    Article  CAS  PubMed  Google Scholar 

  19. Belotto A, Leanes LF, Schneider MC, Tamayo H, Correa E (2005) Overview of rabies in the Americas. Virus Res 111(1): 5–12. https://doi.org/10.1016/j.virusres.2005.03.006

  20. Johnson N, Aréchiga-Ceballos N, Aguilar-Setien A (2014) Vampire bat rabies: ecology, epidemiology and control. Viruses 6(5):1911–1928. https://doi.org/10.3390/v6051911

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mayen F (2003) Haematophagous bats in Brazil: their role in rabies transmission, impact on public health, livestock industry and alternatives to an indiscriminate reduction of bat population. J Vet Med 50(10):469–472. https://doi.org/10.1046/j.1439-0450.2003.00713.x

    Article  CAS  Google Scholar 

  22. Ministério da Agricultura, Pecuária e Abastecimento do Brasil (2013) Ações de controle da raiva dos herbívoros no Brasil. http://wwwagriculturagovbr/assuntos/sanidade-animal-e-vegetal/saude-animal/programas-de-saude-animal/DADOSRAIVAATE2015pdf Accessed 23 July 2019

  23. Ministério da Agricultura, Pecuária e Abastecimento do Brasil (2019) Coordenação de Informação e Epidemiologia – Saúde Animal SIZ/CIEP/CGPZ/DSA/SDA. http://indicadores.agricultura.gov.br/saudeanimal/index.htm. Accessed 23 July 2019

  24. World Organisation for Animal Health (2019) Disease distribution maps, World Animal Health Information Database (WAHIS Interface) – Version 1. http://www.oie.int/wahis_2/public/wahid.php/Diseaseinformation/Diseasedistributionmap. Accessed 23 July 2019

  25. Ministério da Saúde do Brasil (2014) Normas técnicas de prolaxia da raiva humana. http://portalarquivos.saude.gov.br/images/pdf/2015/outubro/19/Normas-tecnicas-profilaxia-raiva.pdf. Accessed 23 July 2019

  26. Centro Estadual de Vigilância em Saúde do Rio Grande do Sul (2018) Situação epidemiológica/dados. Raiva humana https://wwwcevsrsgovbr/upload/arquivos/201809/18124231-dados-atendimento-antirrabico-pagina-cevs-09-2018pdf Accessed 23 July 2019

  27. Carnieli P Jr, Castilho JG, Fahl WO, Véras NMC, Timenetsky MCST (2009) Genetic characterization of rabies virus isolated from cattle between 1997 and 2002 in an epizootic area in the state of São Paulo, Brazil. Virus Res 144(1–2):215–224. https://doi.org/10.1016/j.virusres.2009.05.001

    Article  CAS  PubMed  Google Scholar 

  28. Velasco-Villa A, Orciari LA, Juárez-Islas V, Gómez-Sierra M, Padilla-Medina I, Flisser A, Souza V, Castillo A, Franka R, Escalante-Mañe M, Sauri-González I, Rupprecht CE (2006) Molecular diversity of rabies viruses associated with bats in Mexico and other countries of the Americas. J Clin Microbiol 44(5):1697–1710. https://doi.org/10.1128/JCM.44.5.1697-1710.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kanitz FA, Kowalski AP, Batista HBCH, Carnieli P Jr, Oliveira RN, Weiblen R, Flores EF (2014) Molecular epidemiology of an outbreak of bovine rabies in Central Rio Grande do Sul, Brazil, 2012. Cienc Rural 44(5):834–840. https://doi.org/10.1590/S0103-84782014000500012

    Article  Google Scholar 

  30. Sato G, Itou T, Shoji Y, Miura Y, Mikami T, Ito M, Kurane I, Samara SI, Carvalho AA, Nociti DP, Ito FH, Sakai T (2004) Genetic and phylogenetic analysis of glycoprotein of rabies virus isolated from several species in Brazil. J Vet Med Sci 66(7):747–753. https://doi.org/10.1292/jvms.66.747

    Article  CAS  PubMed  Google Scholar 

  31. Wunner WH (2007) Rabies Virus. In: Jackson AC, Wunner WH (eds) Rabies, 2nd edn. Academic Press, Cambridge, pp 23–69. https://doi.org/10.1016/B978-012369366-2/50004-X

    Chapter  Google Scholar 

  32. Cargnelutti JF, Quadros JM, Martins M, Batista HBCR, Weiblen R, Flores EF (2017) Glycoprotein-G-gene-based molecular and phylogenetic analysis of rabies viruses associated with a large outbreak of bovine rabies in southern Brazil. Arch Virol 162(12):3697–3704. https://doi.org/10.1007/s00705-017-3533-8

    Article  CAS  PubMed  Google Scholar 

  33. Itou T, Fukayama T, Mochizuki N, Kobayashi Y, Deberaldini ER, Carvalho Adolorata AB, Ito FH, Sakai T (2016) Molecular epidemiological tracing of a cattle rabies outbreak lasting less than a month in Rio Grande do Sul in southern Brazil. BMC Res Notes 9(87). https://doi.org/10.1186/s13104-016-1898-5

  34. Fernandes MES (2016) Sequenciamento e análise filogenética do gene da nucleoproteína de vírus da raiva isolados de bovinos nos Estados do Rio Grande do Sul e Santa Catarina. Dissertation, Universidade Federal do ABC

  35. Bourhy H, Kissi B, Tordo N (1993) Molecular diversity of the lyssavirus genus. Virology 194:70–91. https://doi.org/10.1006/viro.1993.1236

    Article  CAS  PubMed  Google Scholar 

  36. Smith JS (1995) Rabies Virus. In: Murray PR (ed) Manual of clinical microbiology, 6th edn. ASM Press, Washington, pp 997–1003

    Google Scholar 

  37. Carnieli P Jr, Fahl WO, Castilho JG, Oliveira RN, Macedo CI, Durymanova E, Jorge RSP, Morato RG, Spíndola RO, Machado LM, Sá JEU, Carrieri ML, Kotait I (2008) Characterization of rabies virus isolated from canids and identification of the main wild canid host in Northeastern Brazil. Virus Res 131(1):33–46. https://doi.org/10.1016/j.virusres.2007.08.007

    Article  CAS  PubMed  Google Scholar 

  38. Staden R (1996) The Staden sequence analysis package. Mol Biotechnol 5:233–241. https://doi.org/10.1007/BF02900361

    Article  CAS  PubMed  Google Scholar 

  39. Torres C, Lema C, Gury Dohmen F, Beltran F, Novaro L, Russo S, Freire MC, Velasco-Villa A, Mbayed VA, Cisterna DM (2014) Phylodynamics of vampire bat-transmitted rabies in Argentina. Mol Ecol 23(9):2340–2352. https://doi.org/10.1111/mec.12728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guarino H, Castilho JG, Souto J, Oliveira RN, Carrieri ML, Kotait I (2013) Antigenic and genetic characterization of rabies virus isolates from Uruguay. Virus Res 173(2):415–420. https://doi.org/10.1016/j.virusres.2012.12.013

    Article  CAS  PubMed  Google Scholar 

  41. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  42. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nei M, Kumar S (2000) Molecular evolution and Phylogenetics. Oxford University Press, New York

    Google Scholar 

  44. Masatani T, Ito N, Shimizu K, Ito Y, Nakagawa K, Abe M, Yamaoka S, Sugiyama M (2011) Amino acids at positions 273 and 394 in rabies virus nucleoprotein are important for both evasion of host RIG-I-mediated antiviral response and pathogenicity. Virus Res 155(1):168–174. https://doi.org/10.1016/j.virusres.2010.09.016

    Article  CAS  PubMed  Google Scholar 

  45. Masatani T, Ito N, Shimizu K, Ito Y, Nakagawa K, Sawaki Y, Koyama H, Sugiyama M (2010) Rabies virus nucleoprotein functions to evade activation of the RIG-I-mediated antiviral response. J Virol 84(8):4002–4012. https://doi.org/10.1128/JVI.02220-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shimizu K, Ito N, Mita T, Yamada K, Hosokawa-Muto J, Sugiyama M, Minamoto N (2007) Involvement of nucleoprotein, phosphoprotein, and matrix protein genes of rabies virus in virulence for adult mice. Virus Res 123(2):154–160. https://doi.org/10.1016/j.virusres.2006.08.011

    Article  CAS  PubMed  Google Scholar 

  47. Cleveland SB, Davies J, McClure MA (2011) A bioinformatics approach to the structure, function, and evolution of the nucleoprotein of the order Mononegavirales. PLoS One 6(5):e19275. https://doi.org/10.1371/journal.pone.0019275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Albertini AAV, Wernimont AK, Muziol T, Ravelli RBG, Clapier CR, Schoehn G, Weissenhorn W, Ruigrok RWH (2006) Crystal structure of the rabies virus nucleoprotein-RNA complex. Science 313(5785):360–363. https://doi.org/10.1126/science.1125280

    Article  CAS  PubMed  Google Scholar 

  49. World Organisation for Animal Health (2008) OIE Terrestrial Manual. Chapter 2.1.13. http://www.oie.int/fileadmin/Home/eng/Publications_%26_Documentation/docs/pdf/2.01.13_RABIES.pdf. Accessed 23 July 2019

  50. Batista HBCR, Schmidt E, Caldas E, Massunaga P, Teixeira TF, Schaefer R, Roehe PM (2008) Caracterização de amostras do vírus da raiva, isoladas nas regiões Norte e Centro-Oeste do Brasil, com anticorpos monoclonais antilissavírus. Arq Bras Med Vet Zootec 60(1):260–262. https://doi.org/10.1590/S0102-09352008000100036

    Article  Google Scholar 

  51. Haydon DT, Cleaveland S, Taylor LH, Laurenson MK (2002) Identifying reservoirs of infection: a conceptual and practical challenge. Emerg Infect Dis 8(12):1468–1473. https://doi.org/10.3201/eid0812.010317

    Article  PubMed  Google Scholar 

  52. Blackwood JC, Streicker DG, Altizer S, Rohani P (2013) Resolving the roles of immunity, pathogenesis, and immigration for rabies persistence in vampire bats. Proc Natl Acad Sci U S A 110(51):20837–20842. https://doi.org/10.1073/pnas.1308817110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carnieli P Jr, Castilho JG, Fahl WO, Véras NMC, Carrieri ML, Kotait I (2009) Molecular characterization of rabies virus isolates from dogs and crab-eating foxes in Northeastern Brazil. Virus Res 141(1):81–89. https://doi.org/10.1016/j.virusres.2008.12.015

    Article  CAS  PubMed  Google Scholar 

  54. Secretaria da Agricultura, Pecuária e Desenvolvimento Rural do Rio Grande do Sul (2016) Relatório raiva bovina 2011 – jun 2016. http://www.agricultura.rs.gov.br/upload/arquivos/201612/02110534-see-relatorio-raiva-bovina-v-3.pdf. Accessed 23 July 2019

  55. Wiit, AA, Hoffmeister, W (2019) O desafio do controle da população de morcegos hematófagos no Rio Grande do Sul - o papel dos Núcleos de Controle da Raiva. Informativo Técnico DDA 8(2):1–16. https://www.agricultura.rs.gov.br/upload/arquivos/201905/07102842-it-desafio-no-controle-de-morcegos-hematofagos-no-rs.pdf. Accessed 12 May 2019

  56. Rodenbusch CR, Ferreira JC, Rosa JCA, Migliavacca VF, Bertagnolli AC, Peres ME, Almeida LL (2016) Spatial and temporal description of laboratory diagnosis of bovine rabies in the state of Rio Grande do Sul, Brazil. Acta Sci Vet 44:1411

    Google Scholar 

Download references

Acknowledgments

We thank the Secretaria da Agricultura, Pecuária e Desenvolvimento Rural do Rio Grande do Sul (SEAPDR/RS) for the leaving period conceded to GLA and for Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF) for providing some bovine brains and information concerning the viral sequences and to Nilton Rossato and Wilson Hoffmeister, coordinators of the Herbivore Rabies Control Program in Rio Grande do Sul, for their support and encouragement for this study.

Funding

EFF and RW are recipients of CNPq fellowships (Conselho Nacional de Desenvolvimento Científico e Tecnológico). This study was founded in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001 and by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (47337/2014–9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo F. Flores.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Responsible Editor: Fernando R. Spilki.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 494 kb)

ESM 2

(PDF 322 kb)

ESM 3

(PDF 229 kb)

ESM 4

(PDF 387 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida, G.L., Cargnelutti, J.F., Ries, A.S. et al. Sequence analysis of nucleoprotein gene reveals the co-circulation of lineages and sublineages of rabies virus in herbivorous in Rio Grande do Sul state, Brazil. Braz J Microbiol 51, 837–846 (2020). https://doi.org/10.1007/s42770-020-00226-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00226-z

Keywords

Navigation