Skip to main content
Log in

A Heterogeneous Quasi-solid-State Hybrid Electrolyte Constructed from Electrospun Nanofibers Enables Robust Electrode/Electrolyte Interfaces for Stable Lithium Metal Batteries

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Quasi-solid-state electrolytes that possess high ionic conductivity, excellent interface stability, and low interfacial resistance, are required for practical solid-state batteries. Herein, a heterogeneous quasi-solid-state hybrid electrolyte (QSHE) with a robust lithium-ion transport layer composed of Li1+xAlxTi2−x(PO4)3 (LATP) nanoparticles (NPs) at the anode/electrolyte interface was fabricated using electrospun nanofibers as a skeleton via a facile in situ polymerization approach. The QSHE exhibits a high ionic conductivity (0.98 mS cm−1), a wide electrochemical window (4.76 V vs. Li/Li+), and favorable compatibility with lithium metal (maintaining stability over 2000 h in a symmetrical cell) at room temperature. When coupled with a Li|LiFePO4 battery, the QSHE enables the battery to retain 95.4% of its capacity after 300 cycles at 2 C. Moreover, the atomic force microscopy verifies the high Young’s modulus of the LATP-dominated bottom layer, while numerical simulation validates the effective distribution of lithium ions at the interface facilitated by LATP NPs, hence contributing to dendrite-free lithium plating/stripping morphology. This straightforward strategy could pave the way for the development of high-performance and interfacially stable lithium metal batteries.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data are available upon reasonable request.

References

  1. Chen Y, Xu M, Huang Y, Manthiram A. Creating a rechargeable world. Chemistry. 2022;8:312.

    Article  CAS  Google Scholar 

  2. Ma L, Chen H, Wu J, Lv Y, Chen X, Li X, Li QJ, Di J, Chen Y. Recent progress on zeolitic imidazolate frameworks and their derivatives in alkali metal-chalcogen batteries. Adv Energy Mater. 2021;12:2103152.

    Article  Google Scholar 

  3. Li C, Tong L, Wang S, Liu Q, Wang Y, Li X, Wang M, Li M, Chen X, Wu J, Chen Q, Mai YW, Fan W, Chen Y, Li X. Nitrogen doping induced by intrinsic defects of recycled polyethylene terephthalate-derived carbon nanotubes. SusMat. 2023;3:431.

    Article  CAS  Google Scholar 

  4. Iqbal H, Sarwar S, Kirli D, Shek JKH, Kiprakis AE. A survey of second-life batteries based on techno-economic perspective and applications-based analysis. Carbon Neutrality. 2023;2:8.

    Article  Google Scholar 

  5. Ma L, Lv Y, Wu J, Chen Y, Jin Z. recent advances in emerging non-lithium metal-sulfur batteries: a review. Adv Energy Mater. 2021;11:2100770.

    Article  CAS  Google Scholar 

  6. Wang Z, Li X, Chen Y, Pei K, Mai Y-W, Zhang S, Li J. Creep-enabled 3D solid-state lithium-metal battery. Chemistry. 2020;6:2878.

    Article  CAS  Google Scholar 

  7. Wu J, He J, Wang M, Li M, Zhao J, Li Z, Chen H, Li X, Li C, Chen X, Li X, Mai YW, Chen Y. Electrospun carbon-based nanomaterials for next-generation potassium batteries. Chem Commun. 2023;59:2381.

    Article  CAS  Google Scholar 

  8. Li M, Chen H, Wang Y, Chen X, Wu J, Su J, Wang M, Li X, Li C, Ma L, Li X, Chen Y. Two birds with one stone: engineering siloxane-based electrolytes for high-performance lithium-sulfur polyacrylonitrile batteries. J Mater Chem A. 2023;11:11721.

    Article  CAS  Google Scholar 

  9. Li C, Qiu M, Li R, Li X, Wang M, He J, Lin G, Xiao L, Qian Q, Chen Q, Wu J, Li X, Mai Y-W, Chen Y. Electrospinning engineering enables high-performance sodium-ion batteries. Adv Fiber Mater. 2022;4:43.

    Article  CAS  Google Scholar 

  10. Xu X, Cheng X, Jiang F, Yang S, Ren D, Shi P, Hsu H, Yuan H, Huang J, Ouyang M, Zhang Q. Dendrite-accelerated thermal runaway mechanisms of lithium metal pouch batteries. SusMat. 2022;2:435.

    Article  CAS  Google Scholar 

  11. Chen Y, Wang Z, Li X, Yao X, Wang C, Li Y, Xue W, Yu D, Kim SY, Yang F, Kushima A, Zhang G, Huang H, Wu N, Mai YW, Goodenough JB, Li J. Li metal deposition and stripping in a solid-state battery via Coble creep. Nature. 2020;578:251.

    Article  CAS  PubMed  Google Scholar 

  12. Wang M, Wu Y, Qiu M, Li X, Li C, Li R, He J, Lin G, Qian Q, Wen Z, Li X, Wang Z, Chen Q, Chen Q, Lee J, Mai YW, Chen Y. Research progress in electrospinning engineering for all-solid-state electrolytes of lithium metal batteries. J Energy Chem. 2021;61:253.

    Article  Google Scholar 

  13. Li X, Chen W, Qian Q, Huang H, Chen Y, Wang Z, Chen Q, Yang J, Li J, Mai YW. Electrospinning-based strategies for battery materials. Adv Energy Mater. 2020;11:2000845.

    Article  Google Scholar 

  14. Yan C-L. Realizing high performance of solid-state lithium metal batteries by flexible ceramic/polymer hybrid solid electrolyte. Rare Met. 2020;39:458.

    Article  CAS  Google Scholar 

  15. Yu Q, Jiang K, Yu C, Chen X, Zhang C, Yao Y, Jiang B, Long H. Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries. Chin Chem Lett. 2021;32:2659.

    Article  CAS  Google Scholar 

  16. Wu J, Chen X, Fan W, Li X, Mai Y-W, Chen Y. Rationally designed alloy phases for highly reversible alkali metal batteries. Energy Stor Mater. 2022;48:223.

    Google Scholar 

  17. Zhang H, Chen Y, Li C, Armand M. Electrolyte and anode-electrolyte interphase in solid-state lithium metal polymer batteries: a perspective. SusMat. 2021;1:24.

    Article  CAS  Google Scholar 

  18. Yan C, Zhu P, Jia H, Zhu J, Selvan RK, Li Y, Dong X, Du Z, Angunawela I, Wu N, Dirican M, Zhang X. High-performance 3D fiber network composite electrolyte enabled with Li-ion conducting nanofibers and amorphous PEO-based cross-linked polymer for ambient all-solid-state lithium-metal batteries. Adv Fiber Mater. 2019;1:46.

    Article  Google Scholar 

  19. Liu Q, Han X, Wei G, Zhang H, Li Y, Li J, He X. Inorganic composites improving conductivities of solid polymer electrolytes for lithium batteries: a review. ChemNanoMat. 2023;9: e202300202.

    Article  CAS  Google Scholar 

  20. Wei C, Liu X, Yu C, Chen S, Chen S, Cheng S, Xie J. Revealing performance of 78Li2S-22P2S5 glass-ceramic based solid-state batteries at different operating temperatures. Chin Chem Lett. 2023;34: 107859.

    Article  CAS  Google Scholar 

  21. Wang G, Liang Y, Liu H, Wang C, Li D, Fan L-Z. Scalable, thin asymmetric composite solid electrolyte for high-performance all-solid-state lithium metal batteries. Interdiscip Mater. 2022;1:434.

    Article  Google Scholar 

  22. Zhu J, He S, Tian H, Hu Y, Xin C, Xie X, Zhang L, Gao J, Hao S, Zhou W, Zhang L. The influences of DMF content in composite polymer electrolytes on Li+-conductivity and interfacial stability with Li-metal. Adv Funct Mater. 2023;33:2301165.

    Article  CAS  Google Scholar 

  23. Wang L, Shi H, Xie Y, Wu Z-S. Fluorinated boron nitride nanosheet enhanced ultrathin and conductive polymer electrolyte for high-rate solid-state lithium metal batteries. Interdiscip Mater. 2023;2:789.

    Article  Google Scholar 

  24. Yan W, Gao X, Jin X, Liang S, Xiong X, Liu Z, Wang Z, Chen Y, Fu L, Zhang Y, Zhu Y, Wu Y. Nonporous gel electrolytes enable long cycling at high current density for lithium-metal anodes. ACS Appl Mater Interfaces. 2021;13:14258.

    Article  CAS  PubMed  Google Scholar 

  25. Zhijie B, Xiangxin G. Solidification for solid-state lithium batteries with high energy density and long cycle life. Energy Mater. 2022;2: 200011.

    Article  Google Scholar 

  26. Xie X, Wang Z, He S, Chen K, Huang Q, Zhang P, Hao SM, Wang J, Zhou W. Influencing factors on li-ion conductivity and interfacial stability of solid polymer electrolytes, exampled by polycarbonates, polyoxalates, and polymalonates. Angew Chem Int Ed. 2023;135: e202218229.

    Article  Google Scholar 

  27. Matteo P, Akiko T, Henry A, Maria Assunta N, Stefano P. Ionic liquids and their derivatives for lithium batteries: role, design strategy, and perspectives. Energy Mater. 2023;3: 300049.

    Article  Google Scholar 

  28. Wang S, Zhang J, Hua W, Wen L, Tang G, Wang X, Ma C, Chen W. Solvation-enhanced electrolyte on layered oxide cathode tailoring even and stable CEI for durable sodium storage. Carbon Neutrality. 2023;2:20.

    Article  Google Scholar 

  29. Cheng H, Yan C, Orenstein R, Dirican M, Wei S, Subjalearndee N, Zhang X. Polyacrylonitrile nanofiber-reinforced flexible single-ion conducting polymer electrolyte for high-performance, room-temperature all-solid-state Li-metal batteries. Adv Fiber Mater. 2022;4:532.

    Article  CAS  Google Scholar 

  30. Wang L, Xu S, Wang Z, Yang E, Jiang W, Zhang S, Jian X, Hu F. A nanofiber–gel composite electrolyte with high Li+ transference number for application in quasi-solid batteries. eScience. 2023;3: 100090.

    Article  Google Scholar 

  31. Yang Y, Yang W, Yang H, Zhou H. Electrolyte design principles for low-temperature lithium-ion batteries. eScience. 2023;3: 100170.

    Article  Google Scholar 

  32. Yu J, Lin X, Liu J, Yu JTT, Robson MJ, Zhou G, Law HM, Wang H, Tang BZ, Ciucci F. In situ fabricated quasi-solid polymer electrolyte for high-energy-density lithium metal battery capable of subzero operation. Adv Energy Mater. 2021;12:2102932.

    Article  Google Scholar 

  33. Chen D, Zhu M, Kang P, Zhu T, Yuan H, Lan J, Yang X, Sui G. Self-enhancing gel polymer electrolyte by in situ construction for enabling safe lithium metal battery. Adv Sci. 2022;9: e2103663.

    Article  Google Scholar 

  34. Liu F, Li T, Yang Y, Yan J, Li N, Xue J, Huo H, Zhou J, Li L. Investigation on the copolymer electrolyte of poly(1,3-dioxolane-co-formaldehyde). Macromol Rapid Commun. 2020;41:2000047.

    Article  CAS  Google Scholar 

  35. Liu Q, Cai B, Li S, Yu Q, Lv F, Kang F, Wang Q, Li B. Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex-situ anodic pretreatment and an in-built gel polymer electrolyte. J Mater Chem A. 2020;8:7197.

    Article  CAS  Google Scholar 

  36. Liu F, Wang W, Yin Y, Zhang S, Shi J, Wang L, Zhang X, Zheng Y, Zhou J, Li L, Guo Y. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci Adv. 2018;4:eaat5383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li L, Li R, Huang Z, Liu M, Xiang J, Shen X, Jing M. High-performance gel electrolyte for enhanced interface compatibility and lithium metal stability in high-voltage lithium battery. Colloid Surface A. 2022;651: 129665.

    Article  CAS  Google Scholar 

  38. Ma Q, Yue J, Fan M, Tan S, Zhang J, Wang W, Liu Y, Tian Y, Xu Q, Yin Y, You Y, Luo A, Xin S, Wu X, Guo Y. Formulating the electrolyte towards high-energy and safe rechargeable lithium-metal batteries. Angew Chem Int Ed. 2021;60:16554.

    Article  CAS  Google Scholar 

  39. Huang K, Bi S, Xu H, Wu L, Fang C, Zhang X. Optimizing Li-ion solvation in gel polymer electrolytes to stabilize Li-metal anode. Chemsuschem. 2023;16(19): e202300671.

    Article  CAS  PubMed  Google Scholar 

  40. Rath PC, Liu M, Lo S, Dhaka RS, Bresser D, Yang C, Lee S, Chang JK. Suppression of dehydrofluorination reactions of a Li0.33La0.557TiO3-nanofiber-dispersed poly(vinylidene fluoride-co-hexafluoropropylene) electrolyte for quasi-solid-state lithium-metal batteries by a fluorine-rich succinonitrile interlayer. ACS Appl Mater Interfaces. 2023;15:15429.

    Article  CAS  PubMed  Google Scholar 

  41. Chen H, Li M, Li C, Li X, Wu Y, Chen X, Wu J, Li X, Chen Y. Electrospun carbon nanofibers for lithium metal anodes: progress and perspectives. Chin Chem Lett. 2022;33:141.

    Article  CAS  Google Scholar 

  42. Li X, Chen Y, Huang H, Mai YW, Zhou L. Electrospun carbon-based nanostructured electrodes for advanced energy storage—a review. Energy Storage Mater. 2016;5:58.

    Article  CAS  Google Scholar 

  43. Chen Z, Kim GT, Kim JK, Zarrabeitia M, Kuenzel M, Liang H, Geiger D, Kaiser U, Passerini S. Highly stable quasi-solid-state lithium metal batteries: reinforced Li1.3Al0.3Ti1.7(PO4)3/Li interface by a protection interlayer. Adv Energy Mater. 2021;11:2101339.

    Article  CAS  Google Scholar 

  44. Chen L-H, Huang Z-Y, Chen S-L, Tong R-A, Wang H-L, Shao G, Wang C-A. In situ polymerization of 1,3-dioxolane infiltrating 3D garnet framework with high ionic conductivity and excellent interfacial stability for integrated solid-state Li metal battery. Rare Met. 2022;41:3694.

    Article  CAS  Google Scholar 

  45. Xia M, Liu Q, Zhou Z, Tao Y, Li M, Liu K, Wu Z, Wang D. A novel hierarchically structured and highly hydrophilic poly(vinyl alcohol-co-ethylene)/poly(ethylene terephthalate) nanoporous membrane for lithium-ion battery separator. J Power Sources. 2014;266:29.

    Article  CAS  Google Scholar 

  46. Li S, Chen Y-M, Liang W, Shao Y, Liu K, Nikolov Z, Zhu Y. A superionic conductive electrochemically stable dual-salt polymer electrolyte. Joule. 1838;2018:2.

    Google Scholar 

  47. Zhao C, Chen P, Zhang R, Chen X, Li B-Q, Zhang X, Cheng X, Zhang Q. An ion redistributor for dendrite-free lithium metal anodes. Sci Adv. 2018;4:eaat3446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cui J, Du Y, Zhao L, Li X, Sun Z, Li D, Li H. Thermal stable poly-dioxolane based electrolytes via a robust crosslinked network for dendrite-free solid-state Li-metal batteries. Chem Eng J. 2023;461: 141973.

    Article  CAS  Google Scholar 

  49. Zhao Q, Liu X, Stalin S, Khan K, Archer LA. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat Energy. 2019;4:365.

    Article  CAS  Google Scholar 

  50. Liu W, Yi C, Li L, Liu S, Gui Q, Ba D, Li Y, Peng D, Liu J. Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew Chem Int Ed. 2021;60:12931.

    Article  CAS  Google Scholar 

  51. Rajendran S, Tang Z, George A, Cannon A, Neumann C, Sawas A, Ryan E, Turchanin A, Arava LMR. Inhibition of lithium dendrite formation in lithium metal batteries via regulated cation transport through ultrathin sub-nanometer porous carbon nanomembranes. Adv Energy Mater. 2021;11:2100666.

    Article  CAS  Google Scholar 

  52. Wang Y, Lin C, Rao J, Gaskell K, Rubloff G, Lee SB. Electrochemically controlled solid electrolyte interphase layers enable superior Li–S batteries. ACS Appl Mater Interfaces. 2018;10:24554.

    Article  CAS  PubMed  Google Scholar 

  53. Didwal PN, Singhbabu YN, Verma R, Sung B-J, Lee G-H, Lee J-S, Chang DR, Park C-J. An advanced solid polymer electrolyte composed of poly(propylene carbonate) and mesoporous silica nanoparticles for use in all-solid-state lithium-ion batteries. Energy Storage Mater. 2021;37:476.

    Article  Google Scholar 

  54. Wang H, Wang Q, Cao X, He Y, Wu K, Yang J, Zhou H, Liu W, Sun X. Thiol-branched solid polymer electrolyte featuring high strength, toughness, and lithium ionic conductivity for lithium-metal batteries. Adv Mater. 2020;32:2001259.

    Article  CAS  Google Scholar 

  55. Gao Y, Yan Z, Gray JL, He X, Wang D, Chen T, Huang Q, Li YC, Wang H, Kim SH, Mallouk TE, Wang D. Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat Mater. 2019;18:384.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No. 22179022, No. 22109023, and No.22209027), the Industry-University Research Joint Innovation Project of Fujian Province (No. 2021H6006), the FuXiaQuan National Independent Innovation Demonstration Zone Collaborative Innovation Platform (No. 2022-P-027), the Youth Innovation Fund of Fujian Province (No. 2021J05043 and No.2022J05046), the Award Program for Fujian Minjiang Scholar Professorship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaochuan Chen, Junxiong Wu, Xiaoyan Li or Yuming Chen.

Ethics declarations

Conflict of Interest

YMC is an editorial board member for Advanced Fiber Materials and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7524 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Lv, S., Li, M. et al. A Heterogeneous Quasi-solid-State Hybrid Electrolyte Constructed from Electrospun Nanofibers Enables Robust Electrode/Electrolyte Interfaces for Stable Lithium Metal Batteries. Adv. Fiber Mater. 6, 727–738 (2024). https://doi.org/10.1007/s42765-023-00371-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00371-8

Keywords

Navigation