Skip to main content
Log in

Snakeskin-Inspired Hierarchical Winkled Surface for Ultradurable Superamphiphobic Fabrics via Short-Fluorinated Polymer Reactive Infusion

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Durable superamphiphobic surfaces are highly desired for real-world applications such as self-cleaning, anti-fouling, personal protection, and functional sportswear. However, challenges still exist in constructing robust superamphiphobic surfaces by using short-fluorinated polymers as one of the promising alternatives for environmentally unfriendly long perfluorinated side-chain polymers. Hierarchical patterns on biological skins endow the creatures with a specific surface for survival. Here, a facile strategy was proposed to generate hierarchical wrinkles for ultradurable superamphiphobic fabrics by simulating the deformation adaptability of snakeskin. Snake-like hierarchical winkling was constructed by the infusion of reactive perfluorooctyltriethoxysilane (FOS) in a wet chemical plus vapor polymerization process. Upon the infusion of FOS, the mismatch of shrinkage caused by gradient crosslinking leads to the formation of a soft wrinkled poly (perfluorooctyl triethoxysilane) (poly-FOS) surface. Such a snakeskin-like hierarchical wrinkled surface and high fluorine density of poly-FOS endowed the treated superamphiphobic fabrics with high water resistance (contact angle 169°), castor oil resistance (154°), and extraordinary durability (withstanding 100 standard laundries, 15,000 rubbing cycles and strong acid and alkali solutions). Moreover, a superamphiphobic surface can be formed on various substrates, including fabric, wood, paper, and glass. This work thus gives new insights into the environmentally friendly manufacture of ultradurable superamphiphobic fabrics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Esmaeilzadeh P, Zandi A, Ghazanfari MH, Khezrnejad A, Fatemi M, Molaei DA. Selective fabrication of robust and multifunctional super nonwetting surfaces by diverse modifications of zirconia–ceria nanocomposites. Langmuir 2022;38:9195.

    Article  CAS  Google Scholar 

  2. Xie Y, Xiong W, Kareem S, Qiu C, Hu Y, Parkin IP, Wang S, Wang H, Chen J, Li L, Chen Z, Sun H, Zhao X. Robust superamphiphobic coatings with gradient and hierarchical architecture and excellent anti-flashover performances. Nano Res 2022;15:7565.

    Article  CAS  Google Scholar 

  3. Jiao X, Li M, Yu X, Yang S, Zhang Y. Mechanically robust superamphiphobic ceramic coatings with releasable nanoparticle-capsules. Chem Eng J 2022;446:137336.

    Article  CAS  Google Scholar 

  4. Wu P, Luo Q, Zhang X, He J, Liu C, Jiang W. Universal rapid demulsification by vacuum suction using superamphiphilic and under liquid superamphiphobic polyurethane/diatomite composites. ACS Appl Mater Inter 2022;14:24775.

    Article  CAS  Google Scholar 

  5. Jiao L, Tong J, Wu Y, Hu Y, Wu H, Li D, Chen R. Self-assembly of superparticles on a lubricated-superamphiphobic patterned surface. Appl Surf Sci 2022;576:151684.

    Article  CAS  Google Scholar 

  6. Wang T, Cui J, Ouyang S, Cui W, Wang S. A new approach to understand the Cassie state of liquids on superamphiphobic materials. Nanoscale 2016;8:3031.

    Article  CAS  Google Scholar 

  7. Feng XJ, Jiang L. Design and creation of superwetting/antiwetting surfaces. Adv Mater 2006;18:3063.

    Article  CAS  Google Scholar 

  8. Hao Y, Wang L, Liang Y, He B, Zhang Y, Cheng B, Kang W, Deng N. Bifunctional semi-closed YF3-doped 1D carbon nanofibers with 3D porous network structure including fluorinating interphases and polysulfide confinement for lithium-sulfur batteries. Nanoscale 2019;11:21324.

    Article  CAS  Google Scholar 

  9. Zhou H, Wang H, Niu H, Gestos A, Wang X, Lin T. Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating. Adv Mater 2012;24:2409.

    Article  CAS  Google Scholar 

  10. Yang J, Zhang Z, Xu X, Men X, Zhu X, Zhou X. Superoleophobic textured aluminum surfaces. New J Chem 2011;35:2422.

    Article  CAS  Google Scholar 

  11. Yao X, Gao J, Song Y, Jiang L. Superoleophobic surfaces with controllable oil adhesion and their application in oil transportation. Adv Funct Mater 2011;21:4270.

    Article  CAS  Google Scholar 

  12. Frøvik N, Greve MM, Helseth LE. Nanostructures and wetting properties controlled by reactive ion etching of fluorinated ethylene propylene. Colloid Surface A 2019;574:228.

    Article  Google Scholar 

  13. Pei M, Huo L, Zhang K, Zhou H, Liu P. Hydrophobic surface via coating fluorinated homopolymer: Effects of the surface etching of silicon wafer and coated fluoropolymer amount. Colloid Surface A 2020;585:123984.

    Article  CAS  Google Scholar 

  14. Chang CW, Hsu HH, Hsu CS, Chen JT. Achieving area-selective atomic layer deposition with fluorinated self-assembled monolayers. J Mater Chem C 2021;9:14589.

    Article  CAS  Google Scholar 

  15. Stenberg P, Sukkaew P, Farkas I, Kordina O, Janzén E, Ojamäe L, Danielsson Ö, Pedersen H. Silicon chemistry in fluorinated chemical vapor deposition of silicon carbide. The J Phys Chem C 2017;121:2711.

    Article  CAS  Google Scholar 

  16. Akiki G, Suchet D, Daineka D, Filonovich S, Bulkin P, Johnson EV. Area selective deposition of silicon by plasma-enhanced chemical vapor deposition using a fluorinated precursor. Appl Surf Sci 2020;531:147305.

    Article  CAS  Google Scholar 

  17. Haruki M, Oda A, Wasada A, Kihara S, Takishima S. Deposition of fluorinated polyimide consisting of 6FDA and TFDB into microscale trenches using supercritical carbon dioxide. J Supercrit Fluids 2017;119:238.

    Article  CAS  Google Scholar 

  18. Soto D, Ugur A, Farnham TA, Gleason KK, Varanasi KK. Short-fluorinated iCVD coatings for nonwetting fabrics. Adv Funct Mater 2018;28:1707355.

    Article  Google Scholar 

  19. Fujii T, Aoki Y, Habazaki H. Fabrication of super-oil-repellent dual pillar surfaces with optimized pillar intervals. Langmuir 2011;27:11752.

    Article  CAS  Google Scholar 

  20. Wong WSY. Surface chemistry enhancements for the tunable super-liquid repellency of low-surface-tension liquids. Nano Lett 2019;19:1892.

    Article  CAS  Google Scholar 

  21. Ma M, Mao Y, Gupta M, Gleason KK, Rutledge GC. Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules 2005;38:9742.

    Article  CAS  Google Scholar 

  22. Yoo Y, You JB, Choi W, Im SG. A stacked polymer film for robust superhydrophobic fabrics. Polym Chem 2013;4:1664.

    Article  CAS  Google Scholar 

  23. Giesy JP, Kannan K. Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol 2001;35:1339.

    Article  CAS  Google Scholar 

  24. Wang N, Szostek B, Buck RC, Folsom PW, Sulecki LM, Gannon JT. 8–2 Fluorotelomer alcohol aerobic soil biodegradation: pathways, metabolites, and metabolite yields. Chemosphere 2009;75:1089.

    Article  CAS  Google Scholar 

  25. Zhang Z, Sarkar D, Biswas JK, Datta R. Biodegradation of per- and polyfluoroalkyl substances (PFAS): a review. Bioresource Technol 2022;344:126223.

    Article  CAS  Google Scholar 

  26. Chen CE, Yang YY, Zhao JL, Liu YS, Hu LX, Li BB, Li CL, Ying GG. Legacy and alternative per- and polyfluoroalkyl substances (PFASs) in the West River and North River, south China: Occurrence, fate, spatio-temporal variations and potential sources. Chemosphere 2021;283:131301.

    Article  CAS  Google Scholar 

  27. Guo J, Resnick P, Efimenko K, Genzer J, DeSimone JM. Alternative fluoropolymers to avoid the challenges associated with perfluorooctanoic acid. Ind Eng Chem Res 2008;47:502.

    Article  CAS  Google Scholar 

  28. Zaggia A, Ameduri B. Recent advances on synthesis of potentially non-bioaccumulable fluorinated surfactants. Curr Opin Colloid Interface Sci 2012;17:188.

    Article  CAS  Google Scholar 

  29. Darmanin T, Tarrade J, Celia E, Guittard F. Superoleophobic meshes with high adhesion by electrodeposition of conducting polymer containing short perfluorobutyl chains. J Phys Chem C 2014;118:2052.

    Article  CAS  Google Scholar 

  30. Honda K, Yamamoto I, Morita M, Yamaguchi H, Arita H, Ishige R, Higaki Y, Takahara A. Effect of α-substituents on molecular motion and wetting behaviors of poly(fluoroalkyl acrylate) thin films with short fluoroalkyl side chains. Polymer 2014;55:6303.

    Article  CAS  Google Scholar 

  31. Zhou J, Wang L, Zha X, Li X. Synthesis of Ag/fluorine-containing polyacrylate latex stabilized by Ag nanoparticle hybrid amphiphilic random copolymer micelles via Pickering emulsion polymerization and its application on fabric finishing. Cellulose 2020;27:9123.

    Article  Google Scholar 

  32. Şakalak H, Yılmaz K, Gürsoy M, Karaman M. Roll-to-roll initiated chemical vapor deposition of superhydrophobic thin films on large-scale flexible substrates. Chem Eng Sci 2020;215:115466.

    Article  Google Scholar 

  33. Honda K, Morita M, Otsuka H, Takahara A. Molecular aggregation structure and surface properties of poly(fluoroalkyl acrylate) thin films. Macromolecules 2005;38:5699.

    Article  CAS  Google Scholar 

  34. Honda K, Morita M, Sakata O, Sasaki S, Takahara A. Effect of surface molecular aggregation state and surface molecular motion on wetting behavior of water on poly(fluoroalkyl methacrylate) thin films. Macromolecules 2010;43:454.

    Article  CAS  Google Scholar 

  35. Quéré D. Wetting and roughness. Annu Rev Mater Res 2008;38:71.

    Article  Google Scholar 

  36. Tan Y, Hu B, Song J, Chu Z, Wu W. Bioinspired multiscale wrinkling patterns on curved substrates: An overview. Nano-Micro Lett 2020;12:101.

    Article  CAS  Google Scholar 

  37. Xu L, Yang L, Yang S, Xu Z, Lin G, Shi J, Zhang R, Yu J, Ge D, Guo Y. Earthworm-inspired ultradurable superhydrophobic fabrics from adaptive wrinkled skin. ACS Appl Mater Inter 2021;13:6758.

    Article  CAS  Google Scholar 

  38. Ahn J, Zhao ZJ, Choi J, Jeong Y, Hwang S, Ko J, Gu J, Jeon S, Park J, Kang M, Del Orbe DV, Cho I, Kang H, Bok M, Jeong J-H, Park I. Morphology-controllable wrinkled hierarchical structure and its application to superhydrophobic triboelectric nanogenerator. Nano Energy 2021;85:105978.

    Article  CAS  Google Scholar 

  39. Hönes R, Kondrashov V, Rühe J. Molting materials: Restoring superhydrophobicity after severe damage via snakeskin-like shedding. Langmuir 2017;33:4833.

    Article  Google Scholar 

  40. Liu P, Liu S, Yu X, Zhang Y. Silane-triggered fabrication of stable waterborne superamphiphobic coatings. Chem Eng J 2021;406:127153.

    Article  CAS  Google Scholar 

  41. Bourget L, Mutin PH, Vioux A, Frances JM. Nonhydrolytic synthesis and structural study of methoxyl-terminated polysiloxane D/Q resins. J Polym Sci Pol Chem 1998;36:2415.

    Article  CAS  Google Scholar 

  42. Zhou H, Wang H, Niu H, Zhao Y, Xu Z, Lin T. A waterborne coating system for preparing robust, self-healing, superamphiphobic surfaces. Adv Funct Mater 2017;27:1604261.

    Article  Google Scholar 

  43. Protsak IS, Morozov YM, Dong W, Le Z, Zhang D, Henderson IM. A 29Si, 1H, and 13C solid-state NMR study on the surface species of various depolymerized organosiloxanes at silica surface. Nanoscale Res Lett 2019;14:160.

    Article  Google Scholar 

  44. Liu S, Zhou H, Wang H, Yang W, Shao H, Fu S, Zhao Y, Liu D, Feng Z, Lin T. Argon-plasma reinforced superamphiphobic fabrics. Small 2017;13:1701891.

    Article  Google Scholar 

  45. Hou Y, Zhu G, Cui J, Wu N, Zhao B, Xu J, Zhao N. Superior hard but quickly reversible Si–O–Si network enables scalable fabrication of transparent, self-healing, robust, and programmable multifunctional nanocomposite coatings. J Am Chem Soc 2022;144:436.

    Article  CAS  Google Scholar 

  46. Zhong Y, Huang P, Yan W, Su Z, Sun C, Xing Y, Lai C. Ion-Conductive Polytitanosiloxane Networks Enable a Robust Solid-Electrolyte Interface for Long-Cycling Lithium Metal Anodes. Adv Funct Mater 2022;32:2110347.

    Article  CAS  Google Scholar 

  47. Li Y, Peterson JJ, Jhaveri SB, Carter KR. Patterned polymer films via reactive silane infusion-induced wrinkling. Langmuir 2013;29:4632.

    Article  CAS  Google Scholar 

  48. Wang D, Xu L, Zhang L, Zhang L, Zhang A. Hydrophobic/superhydrophobic reversible smart materials via photo/thermo dual-response dynamic wrinkled structure. Chem Eng J 2021;420:127679.

    Article  CAS  Google Scholar 

  49. Li Y, Dai S, John J, Carter KR. Superhydrophobic surfaces from hierarchically structured wrinkled polymers. ACS Appl Mater Inter 2013;5:11066.

    Article  CAS  Google Scholar 

  50. Liu H, Zhang S, Li Z, Lu TJ, Lin H, Zhu Y, Ahadian S, Emaminejad S, Dokmeci MR, Xu F, Khademhosseini A. Harnessing the wide-range strain sensitivity of bilayered PEDOT: PSS films for wearable health monitoring. Matter 2021;4:2886.

    Article  CAS  Google Scholar 

  51. Wang H, Xue Y, Ding J, Feng L, Wang X, Lin T. Durable, self-healing superhydrophobic and superoleophobic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane. Angew Chem Int Edit 2011;50:11433.

    Article  CAS  Google Scholar 

  52. Zhou H, Wang H, Niu H, Gestos A, Lin T. Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Adv Funct Mater 2012;23:1664.

    Article  Google Scholar 

  53. Chen J, Zhong X, Jing L, Wyman I, Xu W. The facile preparation of self-cleaning fabrics. Compos Sci Technol 2015;122:1.

    Article  Google Scholar 

  54. Zhou X, Sun S, Zhang C, Wang XY, Jiang Y. Facile fabrication of durable superamphiphobic PET fabrics. J Coat Technol Res 2019;17:711.

    Article  Google Scholar 

  55. Qu M, Ma X, Hou L, Yuan M, He J, Xue M, Liu X, He J. Fabrication of durable superamphiphobic materials on various substrates with wear-resistance and self-cleaning performance from kaolin. Appl Surf Sci 2018;456:737.

    Article  CAS  Google Scholar 

  56. Tian N, Chen K, Wei J, Zhang J. Robust superamphiphobic fabrics with excellent hot liquid repellency and hot water vapor resistance. Langmuir 2022;38:5891.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (52073046, 51873036, 51673039, and 52103106), the Program of Shanghai Academic Leader (21XD1420200), the Chang Jiang Scholar Program (Q2019152) and the Shanghai Shuguang Program (19SG28).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Lyu or Yaozu Liao.

Ethics declarations

Conflicts of Interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1746 KB)

Supplementary file2 (MP4 69319 KB)

Supplementary file3 (MP4 662 KB)

Supplementary file4 (MP4 3468 KB)

Supplementary file5 (MP4 2283 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Lyu, W., Liao, Y. et al. Snakeskin-Inspired Hierarchical Winkled Surface for Ultradurable Superamphiphobic Fabrics via Short-Fluorinated Polymer Reactive Infusion. Adv. Fiber Mater. 5, 543–553 (2023). https://doi.org/10.1007/s42765-022-00240-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00240-w

Keywords

Navigation