Skip to main content

Advertisement

Log in

Antibacterial Electrospun Nanofibrous Materials for Wound Healing

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

One of the leading causes of wound healing delays is bacterial infection, which limits the process of restoring the histological and functional integrity of the skin. Electrospun nanofibrous materials (ENMs) are biocompatible and biodegradable, and they can provide specific physical, chemical, and biological cues to accelerate wound healing. Based on this fact, a series of multifunctional ENMs for complex clinical applications, particularly infected skin injuries, have been developed. Antibiotics, antimicrobial peptides (AMPs), metals and metal oxides (MMOs), and antibacterial polymers have previously been incorporated into ENMs through advanced material processing techniques, endowing ENMs with enhanced and excellent antibacterial activity. This review summarizes wound healing issues and provides recent advances in antibacterial ENMs created by cutting-edge technology. The future of clinical and translational research on ENMs is also discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Martin P. Wound healing–aiming for perfect skin regeneration. Science. 1997;276(5309):75.

    Article  CAS  Google Scholar 

  2. Kalantari K, Mostafavi E, Afifi AM, Izadiyan Z, Jahangirian H, Rafiee-Moghaddam R, Webster TJ. Wound dressings functionalized with silver nanoparticles: promises and pitfalls. Nanoscale. 2020;12(4):2268.

    Article  CAS  Google Scholar 

  3. Jahromi MAM, Zangabad PS, Basri SMM, Zangabad KS, Ghamarypour A, Aref AR, Karimi M, Hamblin MR. Nanomedicine and advanced technologies for burns: preventing infection and facilitating wound healing. Adv Drug Deliv Rev. 2018;123:33.

    Article  Google Scholar 

  4. Liu Y, Zhang YF, Mei TX, Cao H, Hu YH, Jia WW, Wang J, Zhang ZL, Wang Z, Le WJ, et al. hESCs-derived early vascular cell spheroids for cardiac tissue vascular engineering and myocardial infarction treatment. Adv Sci. 2022;9(9):13.

    Article  CAS  Google Scholar 

  5. Farahani M, Shafiee A. Wound healing: from passive to smart dressings. Adv Healthc Mater. 2021;10(16):32.

    Article  Google Scholar 

  6. Li T, Sun MC, Wu SH. State-of-the-art review of electrospun gelatin-based nanofiber dressings for wound healing applications. Nanomaterials. 2022;12(5):24.

    Article  Google Scholar 

  7. Farokhi M, Mottaghitalab F, Fatahi Y, Khademhosseini A, Kaplan DL. Overview of silk fibroin use in wound dressings. Trends Biotechnol. 2018;36(9):907.

    Article  CAS  Google Scholar 

  8. Greenhalgh DG, Longo DL. Management of burns. N Engl J Med. 2019;380(24):2349.

    Article  Google Scholar 

  9. Patel S, Srivastava S, Singh MR, Singh D. Mechanistic insight into diabetic wounds: pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother. 2019;112:15.

    Article  Google Scholar 

  10. Barrett EJ, Liu ZQ, Khamaisi M, King GL, Klein R, Klein BEK, Hughes TM, Craft S, Freedman BI, Bowden DW, et al. Diabetic microvascular disease: an endocrine society scientific statement. J Clin Endocrinol Metab. 2017;102(12):4343.

    Article  Google Scholar 

  11. Liang Y, Li M, Yang Y, Qiao L, Xu H, Guo B. pH/Glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing. ACS Nano. 2022;16(2):3194.

    Article  CAS  Google Scholar 

  12. Patrulea V, Ostafe V, Borchard G, Jordan O. Chitosan as a starting material for wound healing applications. Eur J Pharm Biopharm. 2015;97(Pt B):417.

    Article  CAS  Google Scholar 

  13. Yang Y, Zhao X, Yu J, Chen X, Wang R, Zhang M, Zhang Q, Zhang Y, Wang S, Cheng Y. Bioactive skin-mimicking hydrogel band-aids for diabetic wound healing and infectious skin incision treatment. Bioactive Mater. 2021;6(11):3962.

    Article  CAS  Google Scholar 

  14. Wang M, Wang CG, Chen M, Xi YW, Cheng W, Mao C, Xu TZ, Zhang XX, Lin C, Gao WY, et al. Efficient angiogenesis-based diabetic wound healing/skin reconstruction through bioactive antibacterial adhesive ultraviolet shielding nanodressing with exosome release. ACS Nano. 2019;13(9):10279.

    Article  CAS  Google Scholar 

  15. Zeng Y, Zhu L, Han Q, Liu W, Mao XJ, Li YQ, Yu NZ, Feng SY, Fu QYE, Wang XJ, et al. Preformed gelatin microcryogels as injectable cell carriers for enhanced skin wound healing. Acta Biomater. 2015;25:291.

    Article  CAS  Google Scholar 

  16. Yang XP, Li LF, Yang DZ, Nie J, Ma GP. Electrospun core-shell fibrous 2D scaffold with biocompatible poly(glycerol sebacate) and poly-l-lactic acid for woundhealing. Adv Fiber Mater. 2020;2(2):105.

    Article  CAS  Google Scholar 

  17. Hu WK, Wang ZJ, Zha Y, Gu X, You WJ, Xiao Y, Wang XH, Zhang SM, Wang JL. High flexible and broad antibacterial nanodressing induces complete skin repair with angiogenic and follicle regeneration. Adv Healthc Mater. 2020;9(23):13.

    Article  Google Scholar 

  18. Zhao JW, Cui WG. Functional electrospun fibers for local therapy of cancer. Adv Fiber Mater. 2020;2(5):229.

    Article  CAS  Google Scholar 

  19. Yuan ZC, Sheng DN, Jiang LP, Shafiq M, Khan AUR, Hashim R, Chen YJ, Li BJ, Xie XR, Chen J, et al. Vascular endothelial growth factor-capturing aligned electrospun polycaprolactone/gelatin nanofibers promote patellar ligament regeneration. Acta Biomater. 2022;140:233.

    Article  CAS  Google Scholar 

  20. Chen RM, Zhao C, Chen ZP, Shi XY, Zhu HX, Bu Q, Wang L, Wang CF, He H. A bionic cellulose nanofiber-based nanocage wound dressing for NIR-triggered multiple synergistic therapy of tumors and infected wounds. Biomaterials. 2022;281:13.

    Article  Google Scholar 

  21. Yu R, Zhang HL, Guo BL. Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-Micro Lett. 2022;14(1):46.

    Article  Google Scholar 

  22. Yerra A, Dadala MM. Silk fibroin electrospun nanofiber blends with antibiotics and polyvinyl alcohol for burn wound healing. J Appl Polym Sci. 2022;139(15):10.

    Article  Google Scholar 

  23. Liu XK, Xu HX, Zhang MX, Yu DG. Electrospun medicated nanofibers for wound healing. Rev Membr. 2021;11(10):22.

    CAS  Google Scholar 

  24. Koehler J, Brandl FP, Goepferich AM. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur Polymer J. 2018;100:1.

    Article  CAS  Google Scholar 

  25. Rajendran NK, Kumar SSD, Houreld NN, Abrahamse H. A review on nanoparticle based treatment for wound healing. J Drug Deliv Sci Technol. 2018;44:421.

    Article  CAS  Google Scholar 

  26. Wang ZJ, Hu WK, You WJ, Huang G, Tian WQ, Huselstein C, Wu CL, Xiao Y, Chen Y, Wang XH. Antibacterial and angiogenic wound dressings for chronic persistent skin injury. Chem Eng J. 2021;404:13.

    Article  Google Scholar 

  27. Cheng G, Yin CC, Tu H, Jiang S, Wang Q, Zhou X, Xing X, Xie CY, Shi XW, Du YM, et al. Controlled co-delivery of growth factors through layer-by-layer assembly of core-shell nanofibers for improving bone regeneration. ACS Nano. 2019;13(6):6372.

    Article  CAS  Google Scholar 

  28. Li YJ, Wei SC, Chu HW, Jian HJ, Anand A, Nain A, Huang YF, Chang HT, Huang CC, Lai JY. Poly-quercetin-based nanoVelcro as a multifunctional wound dressing for effective treatment of chronic wound infections. Chem Eng J. 2022;437:10.

    Article  Google Scholar 

  29. Kramer A, Dissemond J, Kim S, Willy C, Mayer D, Papke R, Tuchmann F, Assadian O. Consensus on wound antisepsis: update 2018. Skin Pharmacol Physiol. 2018;31(1):28.

    Article  CAS  Google Scholar 

  30. Las Heras K, Igartua M, Santos-Vizcaino E, Hernandez RM. Chronic wounds: current status, available strategies and emerging therapeutic solutions. J Controlled Release. 2020;328:532.

    Article  CAS  Google Scholar 

  31. Brazil JC, Quiros M, Nusrat A, Parkos CA. Innate immune cell-epithelial crosstalk during wound repair. J Clin Invest. 2019;129(8):2983.

    Article  Google Scholar 

  32. Boni BOO, Lamboni L, Souho T, Gauthier M, Yang G. Immunomodulation and cellular response to biomaterials: the overriding role of neutrophils in healing. Mater Horizons. 2019;6(6):1122.

    Article  Google Scholar 

  33. Rutkow I. Joseph lister and his 1876 tour of America. Ann Surg. 2013;257(6):1181.

    Article  Google Scholar 

  34. Mao JY, Chen L, Cai ZW, Qian ST, Liu ZM, Zhao BF, Zhang YG, Sun XM, Cui WG. Advanced biomaterials for regulating polarization of macrophages in wound healing. Adv Funct Mater. 2022;32(12):25.

    Article  Google Scholar 

  35. Moritz M, Geszke-Moritz M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem Eng J. 2013;228:596.

    Article  CAS  Google Scholar 

  36. Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discovery. 2020;19(5):311.

    Article  CAS  Google Scholar 

  37. Adaligil E, Patil K, Rodenstein M, Kumar K. Discovery of peptide antibiotics composed ofd-amino acids. ACS Chem Biol. 2019;14(7):1498.

    Article  CAS  Google Scholar 

  38. Melo-Cristino J, Larpin Y, Oechslin F, Moreillon P, Resch G, Entenza JM, Mancini S. In vitro characterization of PlyE146, a novel phage lysin that targets gram-negative bacteria. PLoS One. 2018;13(2):e0192507.

    Article  Google Scholar 

  39. Wolcott RD, Hanson JD, Rees EJ, Koenig LD, Phillips CD, Wolcott RA, Cox SB, White JS. Analysis of the chronic wound microbiota of 2,963 patients by 16S rDNA pyrosequencing. Wound Repair Regen. 2016;24(1):163.

    Article  Google Scholar 

  40. Atkin L, Bućko Z, Conde Montero E, Cutting K, Moffatt C, Probst A, Romanelli M, Schultz GS, Tettelbach W. Implementing TIMERS: the race against hard-to-heal wounds. J Wound Care. 2019;23(Sup3a):1.

    Article  Google Scholar 

  41. Dowd SE, Wolcott RD, Kennedy J, Jones C, Cox SB. Molecular diagnostics and personalised medicine in wound care: assessment of outcomes. J Wound Care. 2011;20(5):232.

    Article  CAS  Google Scholar 

  42. Wolcott RD, Rumbaugh KP, James G, Schultz G, Phillips P, Yang Q, Watters C, Stewart PS, Dowd SE. Biofilm maturity studies indicate sharp debridement opens a time- dependent therapeutic window. J Wound Care. 2010;19(8):320.

    Article  CAS  Google Scholar 

  43. Eriksson E, Liu PY, Schultz GS, Martins-Green MM, Tanaka R, Weir D, Gould LJ, Armstrong DG, Gibbons GW, Wolcott R, et al. Chronic wounds: treatment consensus. Wound Repair Regen. 2022;30(2):156.

    Article  Google Scholar 

  44. Rathinam VAK, Fitzgerald KA. Inflammasome complexes: emerging mechanisms and effector functions. Cell. 2016;165(4):792.

    Article  CAS  Google Scholar 

  45. Wang Z, You W, Wang W, Tian W, Chen F, Xiao Y, Chen Y, Wang X. Dihydromyricetin-incorporated multilayer nanofibers accelerate chronic wound healing by remodeling the harsh wound microenvironment. Adv Fiber Mater. 2022. https://doi.org/10.1007/s42765-022-00180-5.

    Article  Google Scholar 

  46. Qu J, Zhao X, Liang Y, Xu Y, Ma PX, Guo B. Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing. Chem Eng J. 2019;362:548.

    Article  CAS  Google Scholar 

  47. Mascharak S, DesJardins-Park HE, Davitt MF, Griffin M, Borrelli MR, Moore AL, Chen K, Duoto B, Chinta M, Foster DS, et al. Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring. Science. 2021;372(6540):362.

    Article  Google Scholar 

  48. Kim CS, Ding XL, Allmeroth K, Biggs LC, Kolenc OI, L’Hoest N, Chacon-Martinez CA, Edlich-Muth C, Giavalisco P, Quinn KP, et al. Glutamine metabolism controls stem cell fate reversibility and long-term maintenance in the hair follicle. Cell Metab. 2020;32(4):629.

    Article  CAS  Google Scholar 

  49. Chen RK, Zhu ZY, Ji SF, Geng ZJ, Hou Q, Sun XY, Fu XB. Sweat gland regeneration: current strategies and future opportunities. Biomaterials. 2020;255:19.

    Article  Google Scholar 

  50. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev. 2019;119(8):5298.

    Article  CAS  Google Scholar 

  51. Tebyetekerwa M, Xu Z, Yang SY, Ramakrishna S. Electrospun nanofibers-based face masks. Adv Fiber Mater. 2020;2(3):161.

    Article  CAS  Google Scholar 

  52. Cheng X, Cheng G, Xing X, Yin CC, Cheng Y, Zhou X, Jiang S, Tao FH, Deng HB, Li ZB. Controlled release of adenosine from core-shell nanofibers to promote bone regeneration through STAT3 signaling pathway. J Control Release. 2020;319:234.

    Article  CAS  Google Scholar 

  53. Hu WK, Wang ZJ, Xu Y, Wang XH, Xiao Y, Zhang SM, Wang JL. Remodeling of inherent antimicrobial nanofiber dressings with melamine-modified fibroin into neoskin. J Mat Chem B. 2019;7(21):3412.

    Article  CAS  Google Scholar 

  54. Cheng X, Cheng G, Xing X, Yin C, Cheng Y, Zhou X, Jiang S, Tao F, Deng H, Li Z. Controlled release of adenosine from core-shell nanofibers to promote bone regeneration through STAT3 signaling pathway. J Controlled Release. 2020;319:234.

    Article  CAS  Google Scholar 

  55. Zhang RJ, Wang ZJ, You WJ, Zhou FF, Guo ZC, Qian KY, Xiao Y, Wang XH. Suppressive effects of plumbagin on the growth of human bladder cancer cells via PI3K/AKT/mTOR signaling pathways and EMT. Cancer Cell Int. 2020;20(1):17.

    Article  Google Scholar 

  56. Li K, Clarkson CM, Wang L, Liu Y, Lamm M, Pang Z, Zhou Y, Qian J, Tajvidi M, Gardner DJ, et al. Alignment of cellulose nanofibers: harnessing nanoscale properties to macroscale benefits. ACS Nano. 2021;15(3):3646.

    Article  CAS  Google Scholar 

  57. Xu H, Fang ZH, Tian WQ, Wang YF, Ye QF, Zhang LN, Cai J. Green fabrication of amphiphilic quaternized beta-chitin derivatives with excellent biocompatibility and antibacterial activities for wound healing. Adv Mater. 2018;30(29):11.

    Article  Google Scholar 

  58. Agarwal Y, Rajinikanth PS, Ranjan S, Tiwari U, Balasubramnaiam J, Pandey P, Arya DK, Anand S, Deepak P. Curcumin loaded polycaprolactone-/polyvinyl alcohol-silk fibroin based electrospun nanofibrous mat for rapid healing of diabetic wound: an in-vitro and in-vivo studies. Int J Biol Macromol. 2021;176:376.

    Article  CAS  Google Scholar 

  59. Zhang Q, Tong Z, Chen FX, Wang XM, Ren MX, Zhao YN, Wu P, He XH, Chen P, Chen Y. Aligned soy protein isolate-modified poly(L-lactic acid) nanofibrous conduits enhanced peripheral nerve regeneration. J Neural Eng. 2020;17(3):15.

    Article  CAS  Google Scholar 

  60. Ma WD, Zhou MJ, Dong WY, Zhao S, Wang YL, Yao JH, Liu ZW, Han HS, Sun DH, Zhang M. A bi-layered scaffold of a poly(lactic-co-glycolic acid) nanofiber mat and an alginate-gelatin hydrogel for wound healing. J Mat Chem B. 2021;9(36):7492.

    Article  CAS  Google Scholar 

  61. Zhang H, Zhang MY, Wang XM, Zhang M, Wang XL, Li YY, Cui ZE, Chen XP, Han YT, Zhao WW. Electrospun multifunctional nanofibrous mats loaded with bioactive anemoside B4 for accelerated wound healing in diabetic mice. Drug Deliv. 2022;29(1):174.

    Article  CAS  Google Scholar 

  62. Zhang Q, Du QY, Zhao YA, Chen FX, Wang ZJ, Zhang YX, Ni H, Deng HB, Li YP, Chen Y. Graphene oxide-modified electrospun polyvinyl alcohol nanofibrous scaffolds with potential as skin wound dressings. RSC Adv. 2017;7(46):28826.

    Article  CAS  Google Scholar 

  63. Khalek MAA, Gaber SAA, El-Domany RA, El-Kemary MA. Photoactive electrospun cellulose acetate/polyethylene oxide/methylene blue and trilayered cellulose acetate/polyethylene oxide/silk fibroin/ ciprofloxacin nanofibers for chronic wound healing. Int J Biol Macromol. 2021;193(8):1752.

    Article  Google Scholar 

  64. Yang JK, Wang K, Yu DG, Yang YY, Bligh SWA, Williams GR. Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Mater Sci Eng C-Mater Biol Appl. 2020;111:10.

    Article  Google Scholar 

  65. Yin J, Xu L, Ahmed A. Batch preparation and characterization of electrospun porous polylactic acid-based nanofiber membranes for antibacterial wound dressing. Adv Fiber Mater. 2022;4(4):13.

    Article  Google Scholar 

  66. Nanditha CK, Kumar GSV. Bioactive peptides laden nano and micro-sized particles enriched ECM inspired dressing for skin regeneration in diabetic wounds. Mater Today Bio. 2022;14:12.

    Google Scholar 

  67. Ramalingam R, Dhand C, Mayandi V, Leung CM, Ezhilarasu H, Karuppannan SK, Prasannan P, Ong ST, Sunderasan N, Kaliappan I, et al. Core-shell structured antimicrobial nanofiber dressings containing herbal extract and antibiotics combination for the prevention of biofilms and promotion of cutaneous wound healing. ACS Appl Mater Interfaces. 2021;13(21):24356.

    Article  CAS  Google Scholar 

  68. Gwon K, Choi WI, Lee S, Lee JS, Shin JH. Biodegradable hyaluronic acid-based, nitric oxide-releasing nanofibers for potential wound healing applications. Biomater Sci. 2021;9(24):8160.

    Article  CAS  Google Scholar 

  69. Kandhasamy S, Arthi N, Arun RP, Verma RS. Synthesis and fabrication of novel quinone-based chromenopyrazole antioxidant-laden silk fibroin nanofibers scaffold for tissue engineering applications. Mater Sci Eng C-Mater Biol Appl. 2019;102:773.

    Article  CAS  Google Scholar 

  70. Ke MF, Wang ZJ, Dong Q, Chen FX, He L, Huselstein C, Wang XH, Chen Y. Facile fabrication of soy protein isolate-functionalized nanofibers with enhanced biocompatibility and hemostatic effect on full-thickness skin injury. Nanoscale. 2021;13(37):15743.

    Article  CAS  Google Scholar 

  71. Liu RR, Hou LL, Yue GC, Li HK, Zhang JS, Liu J, Miao BB, Wang N, Bai J, Cui ZM, et al. Progress of fabrication and applications of electrospun hierarchically porous nanofibers. Adv Fiber Mater. 2022;4(4):27.

    Article  Google Scholar 

  72. Colomer I, Chamberlain AER, Haughey MB, Donohoe TJ. Hexafluoroisopropanol as a highly versatile solvent. Nat Rev Chem. 2017;1(11):12.

    Article  Google Scholar 

  73. Miguel SP, Figueira DR, Simões D, Ribeiro MP, Coutinho P, Ferreira P, Correia IJ. Electrospun polymeric nanofibres as wound dressings: a review. Colloids Surf B. 2018;169:60.

    Article  CAS  Google Scholar 

  74. Sulaiman S, Cieh NL, Mokhtar MN, Naim MN, Kamal S. M. M. Covalent immobilization of cyclodextrin glucanotransferase on kenaf cellulose nanofiber and its application in ultrafiltration membrane system. Process Biochem. 2017;55:85.

    Article  CAS  Google Scholar 

  75. Jeckson TA, Neo YP, Sisinthy SP, Gorain B. Delivery of therapeutics from layer-by-layer electrospun nanofiber matrix for wound healing: an update. J Pharm Sci. 2021;110(2):635.

    Article  CAS  Google Scholar 

  76. Zhou F, Cui C, Sun S, Wu S, Chen S, Ma J, Li CM. Electrospun ZnO-loaded chitosan/PCL bilayer membranes with spatially designed structure for accelerated wound healing. Carbohydr Polym. 2022;282:119131.

    Article  CAS  Google Scholar 

  77. Ke M, Wang Z, Dong Q, Chen F, He L, Huselstein C, Wang X, Chen Y. Facile fabrication of soy protein isolate-functionalized nanofibers with enhanced biocompatibility and hemostatic effect on full-thickness skin injury. Nanoscale. 2021;13(37):15743.

    Article  CAS  Google Scholar 

  78. Homaeigohar S, Boccaccini AR. Antibacterial biohybrid nanofibers for wound dressings. Acta Biomater. 2020;107:25.

    Article  CAS  Google Scholar 

  79. Boncu TE, Ozdemir N. Electrospinning of ampicillin trihydrate loaded electrospun PLA nanofibers I: effect of polymer concentration and PCL addition on its morphology, drug delivery and mechanical properties. Int J Polym Mater Polym Biomater. 2022;71(9):669.

    Article  Google Scholar 

  80. Iqbal H, Khan BA, Khan ZU, Razzaq A, Khan NU, Menaa B, Menaa F. Fabrication, physical characterizations and in vitro antibacterial activity of cefadroxil-loaded chitosan/poly(vinyl alcohol) nanofibers against Staphylococcus aureus clinical isolates. Int J Biol Macromol. 2020;144:921.

    Article  CAS  Google Scholar 

  81. Fazli Y, Shariatinia Z. Controlled release of cefazolin sodium antibiotic drug from electrospun chitosan-polyethylene oxide nanofibrous Mats. Mater Sci Eng C-Mater Biol Appl. 2017;71:641.

    Article  CAS  Google Scholar 

  82. Safdari M, Shakiba E, Kiaie SH, Fattahi A. Preparation and characterization of ceftazidime loaded electrospun silk fibroin/gelatin mat for wound dressing. Fibers Polym. 2016;17(5):744.

    Article  CAS  Google Scholar 

  83. Razzaq A, Khan ZU, Saeed A, Shah KA, Khan NU, Menaa B, Iqbal H, Menaa F. Development of cephradine-loaded gelatin/polyvinyl alcohol electrospun nanofibers for effective diabetic wound healing: in-vitro and in-vivo assessments. Pharmaceutics. 2021. https://doi.org/10.3390/pharmaceutics13030349.

    Article  Google Scholar 

  84. Lanno GM, Ramos C, Preem L, Putrins M, Laidmae I, Tenson T, Kogermann K. Antibacterial porous electrospun fibers as skin scaffolds for wound healing applications. Acs Omega. 2020;5(46):30011.

    Article  CAS  Google Scholar 

  85. Hashemikia S, Farhangpazhouh F, Parsa M, Hasan M, Hassanzadeh A, Hamidi M. Fabrication of ciprofloxacin-loaded chitosan/polyethylene oxide/silica nanofibers for wound dressing application: in vitro and in vivo evaluations. Int J Pharm. 2021;597:120313.

    Article  CAS  Google Scholar 

  86. Yang JK, Wang K, Yu DG, Yang YY, Bligh SWA, Williams GR. Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Mater Sci Eng C-Mater Biol Appl. 2020. https://doi.org/10.1016/j.msec.2020.110805.

    Article  Google Scholar 

  87. Dias AM, da Silva FG, Monteiro APD, Pinzon-Garcia AD, Sinisterra RD, Cortes ME. Polycaprolactone nanofibers loaded oxytetracycline hydrochloride and zinc oxide for treatment of periodontal disease. Mater Sci Eng C-Mater Biol Appl. 2019;103:109798.

    Article  CAS  Google Scholar 

  88. Song W, Seta J, Chen L, Bergum C, Zhou ZB, Kanneganti P, Kast RE, Auner GW, Shen M, Markel DC, et al. Doxycycline-loaded coaxial nanofiber coating of titanium implants enhances osseointegration and inhibits Staphylococcus aureus infection. Biomed Mater. 2017;12(4):045008.

    Article  Google Scholar 

  89. Wali A, Gorain M, Inamdar S, Kundu G, Badiger M. In vivo wound healing performance of halloysite clay and gentamicin-incorporated cellulose ether-PVA electrospun nanofiber mats. Acs Appl Bio Mater. 2019;2(10):4324.

    Article  CAS  Google Scholar 

  90. Barrientos IJH, Paladino E, Brozio S, Passarelli MK, Moug S, Black RA, Wilson CG, Lamprou DA. Fabrication and characterisation of drug-loaded electrospun polymeric nanofibers for controlled release in hernia repair. Int J Pharm. 2017;517(1–2):329.

    Article  Google Scholar 

  91. Fu RQ, Li CW, Yu CP, Xie H, Shi SJ, Li ZH, Wang Q, Lu LC. A novel electrospun membrane based on moxifloxacin hydrochloride/poly(vinyl alcohol)/sodium alginate for antibacterial wound dressings in practical application. Drug Deliv. 2016;23(3):828.

    Article  Google Scholar 

  92. Gong M, Wan PB, Ma D, Zhong MJ, Liao MH, Ye JJ, Shi R, Zhang LQ. Flexible breathable nanomesh electronic devices for on-demand therapy. Adv Funct Mater. 2019;29:26.

    Article  Google Scholar 

  93. Tawfik EA, Alshamsan A, Abul Kalam M, Raish M, Alkholief M, Stapleton P, Harvey K, Craig DQM, Barker SA. In vitro and in vivo biological assessment of dual drug-loaded coaxial nanofibers for the treatment of corneal abrasion. Int J Pharm. 2021;604:120732.

    Article  CAS  Google Scholar 

  94. Ahmadian S, Ghorbani M, Mahmoodzadeh F. Silver sulfadiazine-loaded electrospun ethyl cellulose/polylactic acid/collagen nanofibrous mats with antibacterial properties for wound healing. Int J Biol Macromol. 2020;162:1555.

    Article  CAS  Google Scholar 

  95. Ullah S, Hashmi M, Kharaghani D, Khan MQ, Saito Y, Yamamoto T, Lee J, Kim IS. Antibacterial properties of in situ and surface functionalized impregnation of silver sulfadiazine in polyacrylonitrile nanofiber mats. Int J Nanomed. 2019;14:2693.

    Article  CAS  Google Scholar 

  96. Amiri N, Ajami S, Shahroodi A, Jannatabad N, Darban SA, Bazzaz BSF, Pishavar E, Kalalinia F, Movaffagh J. Teicoplanin-loaded chitosan-PEO nanofibers for local antibiotic delivery and wound healing. Int J Biol Macromol. 2020;162:645.

    Article  CAS  Google Scholar 

  97. Alavarse AC, Silva FWD, Colque JT, da Silva VM, Prieto T, Venancio EC, Bonvent JJ. Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing. Mater Sci Eng C-Mater Biol Appl. 2017;77:271.

    Article  CAS  Google Scholar 

  98. Wang JY, Cai N, Chan V, Zeng H, Shi HR, Xue YA, Yu FQ. Antimicrobial hydroxyapatite reinforced-polyelectrolyte complex nanofibers with long-term controlled release activity for potential wound dressing application. Colloids Surf Physicochem Eng Aspects. 2021. https://doi.org/10.1016/j.colsurfa.2021.126722.

    Article  Google Scholar 

  99. Bakhsheshi-Rad HR, Ismail AF, Aziz M, Akbari M, Hadisi Z, Omidi M, Chen XB. Development of the PVA/CS nanofibers containing silk protein sericin as a wound dressing: In vitro and in vivo assessment. Int J Biol Macromol. 2020;149:513.

    Article  CAS  Google Scholar 

  100. Kalalinia F, Taherzadeh Z, Jirofti N, Amiri N, Foroghinia N, Beheshti M, Bazzaz BSF, Hashemi M, Shahroodi A, Pishavar E, et al. Evaluation of wound healing efficiency of vancomycin-loaded electrospun chitosan/poly ethylene oxide nanofibers in full thickness wound model of rat. Int J Biol Macromol. 2021;177:100.

    Article  CAS  Google Scholar 

  101. Dhand C, Venkatesh M, Barathi VA, Harini S, Bairagi S, Leng EGT, Muruganandham N, Low KZW, Fazil M, Loh XJ, et al. Bio-inspired crosslinking and matrix-drug interactions for advanced wound dressings with long-term antimicrobial activity. Biomaterials. 2017;138:153.

    Article  CAS  Google Scholar 

  102. Lee CH, Liu KS, Cheng CW, Chan EC, Hung KC, Hsieh MJ, Chang SH, Fu XB, Juang JH, Hsieh IC, et al. Codelivery of sustainable antimicrobial agents and platelet-derived growth factor via biodegradable nanofibers for repair of diabetic infectious wounds. Acs Infect Dis. 2020;6(10):2688.

    Article  CAS  Google Scholar 

  103. Davani F, Alishahi M, Sabzi M, Khorram M, Arastehfar A, Zomorodian K. Dual drug delivery of vancomycin and imipenem/cilastatin by coaxial nanofibers for treatment of diabetic foot ulcer infections. Mater Sci Eng C-Mater Biol Appl. 2021;123:111975.

    Article  CAS  Google Scholar 

  104. Su YJ, McCarthy A, Wong SL, Hollins RR, Wang GS, Xie JW. Simultaneous delivery of multiple antimicrobial agents by biphasic scaffolds for effective treatment of wound biofilms. Adv Healthc Mater. 2021;10(12):e2100135.

    Article  Google Scholar 

  105. Cui Z, Luo Q, Bannon MS, Gray VP, Bloom TG, Clore MF, Hughes MA, Crawford MA, Letteri RA. Molecular engineering of antimicrobial peptide (AMP)–polymer conjugates. Biomater Sci. 2021;9(15):5069.

    Article  CAS  Google Scholar 

  106. Su Y, Mainardi VL, Wang H, McCarthy A, Zhang YS, Chen S, John JV, Wong SL, Hollins RR, Wang G, et al. Dissolvable microneedles coupled with nanofiber dressings eradicate biofilms via effectively delivering a database-designed antimicrobial peptide. ACS Nano. 2020;14(9):11775.

    Article  CAS  Google Scholar 

  107. Dart A, Bhave M, Kingshott P. Antimicrobial peptide-based electrospun fibers for wound healing applications. Macromol Biosci. 2019;19(9):1800488.

    Article  Google Scholar 

  108. Hart P, Wood TM, Tehrani KHME, van Harten RM, Śleszyńska M, Rentero Rebollo I, Hendrickx APA, Willems RJL, Breukink E, Martin NI. De novo identification of lipid II binding lipopeptides with antibacterial activity against vancomycin-resistant bacteria. Chem Sci. 2017;8(12):7991.

    Article  Google Scholar 

  109. Song DW, Kim SH, Kim HH, Lee KH, Ki CS, Park YH. Multi-biofunction of antimicrobial peptide-immobilized silk fibroin nanofiber membrane: Implications for wound healing. Acta Biomater. 2016;39:146.

    Article  CAS  Google Scholar 

  110. Adamiak K, Sionkowska A. Current methods of collagen cross-linking: review. Int J Biol Macromol. 2020;161:550.

    Article  CAS  Google Scholar 

  111. Su YJ, Mainardi VL, Wang HJ, McCarthy A, Zhang YS, Chen SX, John JV, Wong SL, Hollins RR, Wang GS, et al. Dissolvable microneedles coupled with nanofiber dressings eradicate biofilms via effectively delivering a database-designed antimicrobial peptide. ACS Nano. 2020;14(9):11775.

    Article  CAS  Google Scholar 

  112. Umedera K, Morita T, Yoshimori A, Yamada K, Katoh A, Kouji H, Nakamura H. Synthesis of three-dimensional (Di)azatricyclododecene scaffold and its application to peptidomimetics. Chem – Eur J. 2021;27(46):11888.

    Article  CAS  Google Scholar 

  113. Kim M, Mun W, Jung WH, Lee J, Cho G, Kwon J, Ahn DJ, Mitchell RJ, Kim B-S. Antimicrobial PEGtides: a modular poly(ethylene glycol)-based peptidomimetic approach to combat bacteria. ACS Nano. 2021;15(5):9143.

    Article  CAS  Google Scholar 

  114. Wang J, Chen X-Y, Zhao Y, Yang Y, Wang W, Wu C, Yang B, Zhang Z, Zhang L, Liu Y, et al. pH-switchable antimicrobial nanofiber networks of hydrogel eradicate biofilm and rescue stalled healing in chronic wounds. ACS Nano. 2019;13(10):11686.

    Article  CAS  Google Scholar 

  115. Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci. 2009;145(1–2):83.

    Article  CAS  Google Scholar 

  116. Sun YG, Xia YN. Shape-controlled synthesis of gold and silver nanoparticles. Science. 2002;298(5601):2176.

    Article  CAS  Google Scholar 

  117. Cao SJ, Yang YF, Zhang SK, Liu KH, Chen J. D. Multifunctional dopamine modification of green antibacterial hemostatic sponge. Mater Sci Eng C-Mater Biol Appl. 2021;127:10.

    Article  Google Scholar 

  118. Mani M, Pavithra S, Mohanraj K, Kumaresan S, Alotaibi SS, Eraqi MM, Gandhi AD, Babujanarthanam R, Maaza M, Kaviyarasu K. Studies on the spectrometric analysis of metallic silver nanoparticles (Ag NPs) using Basella alba leaf for the antibacterial activities. Environ Res. 2021;199:8.

    Article  Google Scholar 

  119. Patra D, El Kurdi R. Curcumin as a novel reducing and stabilizing agent for the green synthesis of metallic nanoparticles. Green Chem Lett Rev. 2021;14(3):474.

    Article  CAS  Google Scholar 

  120. Behravan M, Panahi AH, Naghizadeh A, Ziaee M, Mandavi R, Mirzapour A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol. 2019;124:148.

    Article  CAS  Google Scholar 

  121. Grassian VH. When size really matters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments. J Phys Chem C. 2008;112(47):18303.

    Article  CAS  Google Scholar 

  122. Falcaro P, Ricco R, Yazdi A, Imaz I, Furukawa S, Maspoch D, Ameloot R, Evans JD, Doonan CJ. Application of metal and metal oxide nanoparticles@MOFs. Coord Chem Rev. 2016;307:237.

    Article  CAS  Google Scholar 

  123. Khezerlou A, Alizadeh-Sani M, Azizi-Lalabadi M, Ehsani A. Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb Pathog. 2018;123:505.

    Article  CAS  Google Scholar 

  124. Laurent S, Boutry S, Muller RN. Chapter 1 - metal oxide particles and their prospects for applications. In: Mahmoudi M, Laurent S, editors. Iron oxide nanoparticles for biomedical applications. Elsevier. 2018; 3–42.

  125. Długosz O, Szostak K, Staroń A, Pulit-Prociak J, Banach M. Methods for reducing the toxicity of metal and metal oxide NPs as biomedicine. Materials. 2020;13(2):279.

    Article  Google Scholar 

  126. Vinardell MP, Mitjans M. Antitumor Activities of Metal Oxide Nanoparticles. Nanomaterials. 2015;5(2):1004.

    Article  CAS  Google Scholar 

  127. Anjum S, Hashim M, Malik SA, Khan M, Lorenzo JM, Abbasi BH, Hano C. Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers. 2021;13(18):4570.

    Article  CAS  Google Scholar 

  128. Wu YF, Zang Y, Xu L, Wang JJ, Jia HG, Miao FJ. Synthesis of high-performance conjugated microporous polymer/TiO2 photocatalytic antibacterial nanocomposites. Mater Sci Eng C-Materials Biol Appl. 2021;126:11.

    Google Scholar 

  129. Li Q, Yin YC, Cao DX, Wang Y, Luan PC, Sun X, Liang WT, Zhu HL. Photocatalytic rejuvenation enabled self-sanitizing, reusable, and biodegradable masks against COVID-19. ACS Nano. 2021;15(7):11992.

    Article  CAS  Google Scholar 

  130. Leng J, He Y, Yuan Z, Tao BL, Li K, Lin CC, Xu K, Chen MW, Dai LL, Li XM, et al. Enzymatically-degradable hydrogel coatings on titanium for bacterial infection inhibition and enhanced soft tissue compatibility via a self-adaptive strategy. Bioactive Mater. 2021;6(12):4670.

    Article  CAS  Google Scholar 

  131. Guo N, Cang F, Wang Z, Zhao TT, Song XR, Farris S, Li YY, Fu YJ. Magnetism and NIR dual-response polypyrrole-coated Fe3O4 nanoparticles for bacteria removal and inactivation. Mater Sci Eng C-Mater Biol Appl. 2021;126:11.

    Article  Google Scholar 

  132. Simoes D, Miguel SP, Ribeiro MP, Coutinho P, Mendonca AG, Correia IJ. Recent advances on antimicrobial wound dressing: a review. Eur J Pharm Biopharm. 2018;127:130.

    Article  CAS  Google Scholar 

  133. Ling ZX, Deng J, Zhang ZR, Sui HY, Shi WX, Yuan B, Lin H, Yang X, Cao J, Zhu XD, et al. Spatiotemporal manipulation of L-arginine release from bioactive hydrogels initiates rapid skin wound healing accompanied with repressed scar formation. Appl Mater Today. 2021;24:16.

    Google Scholar 

  134. Wang CG, Wang M, Xu TZ, Zhang XX, Lin C, Gao WY, Xu HZ, Lei B, Mao C. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration (vol 9, pg 65, 2019). Theranostics. 2021;11(20):10174.

    Article  Google Scholar 

  135. Zhang ZWB, Li WB, Liu Y, Yang ZG, Ma LL, Zhuang H, Wang ED, Wu CT, Huan ZG, Guo F, et al. Design of a biofluid-absorbing bioactive sandwich-structured Zn-Si bioceramic composite wound dressing for hair follicle regeneration and skin burn wound healing. Bioactive Mater. 2021;6(7):1910.

    Article  CAS  Google Scholar 

  136. Yao S, Chi JJ, Wang YT, Zhao YJ, Luo Y, Wang YA. Zn-MOF encapsulated antibacterial and degradable microneedles array for promoting wound healing. Adv Healthc Mater. 2021;10(12):e2100056.

    Article  Google Scholar 

  137. Alippilakkotte S, Kumar S, Sreejith L. Fabrication of PLA/Ag nanofibers by green synthesis method using Momordica charantia fruit extract for wound dressing applications. Colloids Surf Physicochem Eng Aspects. 2017;529:771.

    Article  CAS  Google Scholar 

  138. Lee SM, Song KC, Lee BS. Antibacterial activity of silver nanoparticles prepared by a chemical reduction method. Korean J Chem Eng. 2010;27(2):688.

    Article  CAS  Google Scholar 

  139. Stefan M, Hritcu L, Mihasan M, Pricop D, Gostin I, Olariu RI, Dunca S, Melnig V. Enhanced antibacterial effect of silver nanoparticles obtained by electrochemical synthesis in poly(amide-hydroxyurethane) media. J Mater Sci-Mater Med. 2011;22(4):789.

    Article  CAS  Google Scholar 

  140. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C. 2014;44:278.

    Article  CAS  Google Scholar 

  141. Campa-Siqueiros PI, Madera-Santana TJ, Castillo-Ortega MM, Lopez-Cervantes J, Ayala-Zavala JF, Ortiz-Vazquez EL. Electrospun and co-electrospun biopolymer nanofibers for skin wounds on diabetic patients: an overview. RSC Adv. 2021;11(25):15340.

    Article  CAS  Google Scholar 

  142. Castro KC, Campos MGN, Mei LH. I. Hyaluronic acid electrospinning: challenges, applications in wound dressings and new perspectives. Int J Biol Macromol. 2021;173:251.

    Article  CAS  Google Scholar 

  143. Xu H, Fang Z, Tian W, Wang Y, Ye Q, Zhang L, Cai J. Green fabrication of amphiphilic quaternized β-chitin derivatives with excellent biocompatibility and antibacterial activities for wound healing. Adv Mater. 2018;30(29):1801100.

    Article  Google Scholar 

  144. Rahimi M, Ahmadi R, Kafil HS, Shafiei-Irannejad V. A novel bioactive quaternized chitosan and its silver-containing nanocomposites as a potent antimicrobial wound dressing: structural and biological properties. Mater Sci Eng C-Mater Biol Appl. 2019;101:360.

    Article  CAS  Google Scholar 

  145. Ding FY, Zhong YY, Wu SP, Liu XH, Zou XB, Li HB. Synthesis and characterization of quaternized agar in KOH/urea aqueous solution. New J Chem. 2020;44(39):17062.

    Article  CAS  Google Scholar 

  146. Liang XT, Liang B, Wei JY, Zhong SM, Zhang RR, Yin YZ, Zhang YJ, Hu HY, Huang ZQ. A cellulose-based adsorbent with pendant groups of quaternary ammonium and amino for enhanced capture of aqueous Cr(VI). Int J Biol Macromol. 2020;148:802.

    Article  CAS  Google Scholar 

  147. Yu R, Li M, Li Z, Pan G, Liang Y, Guo B. Supramolecular thermo-contracting adhesive hydrogel with self-removability simultaneously enhancing noninvasive wound closure and MRSA-infected wound healing. Adv Healthc Mater. 2022;11(13):2102749.

    Article  CAS  Google Scholar 

  148. Zhao X, Wu H, Guo BL, Dong RN, Qiu YS, Ma P. X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials. 2017;122:34.

    Article  CAS  Google Scholar 

  149. Qu J, Zhao X, Liang YP, Zhang TL, Ma PX, Guo BL. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials. 2018;183:185.

    Article  CAS  Google Scholar 

  150. Zhao X, Guo BL, Wu H, Liang YP, Ma PX. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat Commun. 2018;9(1):17.

    Article  Google Scholar 

  151. Zhao X, Li P, Guo BL, Ma PX. Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomater. 2015;26:236.

    Article  CAS  Google Scholar 

  152. Hu W, Wang Z, Xu Y, Wang X, Xiao Y, Zhang S, Wang J. Remodeling of inherent antimicrobial nanofiber dressings with melamine-modified fibroin into neoskin. J Mat Chem B. 2019;7(21):3412.

    Article  CAS  Google Scholar 

  153. He JH, Liang YP, Shi MT, Guo BL. Anti-oxidant electroactive and antibacterial nanofibrous wound dressings based on poly(epsilon-caprolactone)/quaternized chitosan-graft-polyaniline for full-thickness skin wound healing. Chem Eng J. 2020. https://doi.org/10.1016/j.cej.2019.123464.

    Article  Google Scholar 

  154. Han XJ, Alu A, Liu HM, Shi Y, Wei XW, Cai LL, Wei YQ. Biomaterial-assisted biotherapy: a brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioactive Mater. 2022;17:29.

    Article  CAS  Google Scholar 

  155. Do TB-T, Nguyen TN-T, Ho MH, Nguyen NT-P, Do TM, Vo DT, Hua HT-N, Phan TB, Tran PA, Nguyen H. The efficacy of silver-based electrospun antimicrobial dressing in accelerating the regeneration of partial thickness burn wounds using a porcine model. Polymers. 2021;13(18):3116.

    Article  CAS  Google Scholar 

  156. Ahn S, Chantre CO, Ardona HAM, Gonzalez GM, Campbell PH, Parker KK. Biomimetic and estrogenic fibers promote tissue repair in mice and human skin via estrogen receptor beta. Biomaterials. 2020;255:12.

    Article  Google Scholar 

  157. Cui T, Yu J, Li Q, Wang CF, Chen S, Li W, Wang G. Large-scale fabrication of robust artificial skins from a biodegradable sealant‐loaded nanofiber scaffold to skin tissue via microfluidic blow‐spinning. Adv Mater. 2020;32(32):2000982.

    Article  CAS  Google Scholar 

  158. Yue YP, Gong XB, Jiao WL, Li Y, Yin X, Si Y, Yu JY, Ding B. In-situ electrospinning of thymol-loaded polyurethane fibrous membranes for waterproof, breathable, and antibacterial wound dressing application. J Colloid Interface Sci. 2021;592:310.

    Article  CAS  Google Scholar 

  159. Zhang J, Zhao Y-T, Hu P-Y, Liu J-J, Liu X-F, Hu M, Cui Z, Wang N, Niu Z, Xiang H-F, et al. Laparoscopic electrospinning for in situ hemostasis in minimally invasive operation. Chem Eng J. 2020;395:125089.

    Article  CAS  Google Scholar 

  160. Liang YQ, Liang YP, Zhang HL, Guo BL. Antibacterial biomaterials for skin wound dressing. Asian J Pharm Sci. 2022;17(3):353.

    Article  Google Scholar 

  161. Chen QW, Liu XH, Fan JX, Peng SY, Wang JW, Wang XN, Zhang C, Liu CJ, Zhang XZ. Self-mineralized photothermal bacteria hybridizing with mitochondria-targeted metal-organic frameworks for augmenting photothermal tumor therapy. Adv Funct Mater. 2020;30(14):13.

    Article  CAS  Google Scholar 

  162. Yao S, Chi J, Wang Y, Zhao Y, Luo Y, Wang Y. Zn-MOF encapsulated antibacterial and degradable microneedles array for promoting wound healing. Adv Healthc Mater. 2021;10(12):2100056.

    Article  CAS  Google Scholar 

  163. Wu Q, Liang M, Zhang S, Liu X, Wang F. Development of functional black phosphorus nanosheets with remarkable catalytic and antibacterial performance. Nanoscale. 2018;10(22):10428.

    Article  CAS  Google Scholar 

  164. Xu Z, Deng B, Wang X, Yu J, Xu Z, Liu P, Liu C, Cai Y, Wang F, Zong R, et al. Nanofiber-mediated sequential photothermal antibacteria and macrophage polarization for healing MRSA-infected diabetic wounds. J Nanobiotechnol. 2021;19(1):404.

    Article  CAS  Google Scholar 

  165. Zhou L, Liu N, Feng L, Zhao M, Wu P, Chai Y, Liu J, Zhu P, Guo R. Multifunctional electrospun asymmetric wettable membrane containing black phosphorus/Rg1 for enhancing infected wound healing. Bioeng Trans Med. 2022;7(2):e10274.

    CAS  Google Scholar 

  166. Ghaee A, Karimi M, Lotfi-Sarvestani M, Sadatnia B, Hoseinpour V. Preparation of hydrophilic polycaprolactone/modified ZIF-8 nanofibers as a wound dressing using hydrophilic surface modifying macromolecules. Mater Sci Eng C. 2019;103:109767.

    Article  CAS  Google Scholar 

  167. Yang YT, Liang YP, Chen JY, Duan XL, Guo BL. Mussel-inspired adhesive antioxidant antibacterial hemostatic composite hydrogel wound dressing via photo-polymerization for infected skin wound healing. Bioact Mater. 2022;8:341.

    Article  CAS  Google Scholar 

  168. Dong RN, Guo BL. Smart wound dressings for wound healing. Nano Today. 2021;41:22.

    Article  Google Scholar 

  169. Lee SY, Jeon S, Kwon YW, Kwon M, Kang MS, Seong KY, Park TE, Yang SY, Han DW, Hong SW, et al. Combinatorial wound healing therapy using adhesive nanofibrous membrane equipped with wearable LED patches for photobiomodulation. Sci Adv. 2022;8(15):15.

    Article  CAS  Google Scholar 

  170. Pu ZH, Zhang XG, Yu HX, Tu JA, Chen HL, Liu YC, Su X, Wang RD, Zhang L, Li DC. A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring. Sci Adv. 2021;7(5):11.

    Article  Google Scholar 

  171. Li H, Chang TR, Gai YS, Liang K, Jiao YL, Li DF, Jiang XR, Wang Y, Huang XC, Wu H, et al. Human joint enabled flexible self-sustainable sweat sensors. Nano Energy. 2022;92:12.

    Article  Google Scholar 

  172. Koh A, Kang D, Xue Y, Lee S, Pielak RM, Kim J, Hwang T, Min S, Banks A, Bastien P, et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci Transl Med. 2016;8(366):13.

    Article  Google Scholar 

  173. Zhang QL, Hong S, Dong X, Zheng DW, Liang JL, Bai XF, Wang XN, Han ZY, Zhang XZ. Bioinspired nano-vaccine construction by antigen pre-degradation for boosting cancer personalized immunotherapy. Biomaterials. 2022;287:14.

    Article  Google Scholar 

  174. Zhang X, Jiang W, Xie C, Wu X, Ren Q, Wang F, Shen X, Hong Y, Wu H, Liao Y, et al. Msx1 + stem cells recruited by bioactive tissue engineering graft for bone regeneration. Nat Commun. 2022;13(1):5211.

    Article  CAS  Google Scholar 

  175. Bunpetch V, Zhang XA, Li T, Lin JX, Maswikiti EP, Wu Y, Cai DD, Li J, Zhang SF, Wu CT, et al. Silicate-based bioceramic scaffolds for dual-lineage regeneration of osteochondral defect. Biomaterials. 2019;192:323.

    Article  CAS  Google Scholar 

  176. Xu Y, Liu S-Y, Zeng L, Ma H, Zhang Y, Yang H, Liu Y, Fang S, Zhao J, Xu Y, et al. Enzyme-engineered nonporous copper(I) coordination polymer nanoplatform for cuproptosis-based synergistic cancer therapy. Adv Mater (Deerfield Beach, Fla). 2022. https://doi.org/10.1002/adma.202204733.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Fellowship of China National Postdoctoral Program for Innovative Talents (BX20220240), Improvement Project for Theranostic Ability on Difficulty Miscellaneous Disease (Tumor) from National Health Commission of China (ZLYNXM202006), Chinese Central Special Fund for Local Science and Technology Development of Hubei Province (2018ZYYD023), and Science and Technology Department of Hubei Province Key Project (2018ACA159).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Chen or Xinghuan Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests in this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Hu, W., Wang, W. et al. Antibacterial Electrospun Nanofibrous Materials for Wound Healing. Adv. Fiber Mater. 5, 107–129 (2023). https://doi.org/10.1007/s42765-022-00223-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00223-x

Keywords

Navigation