Skip to main content

Advertisement

Log in

Dihydromyricetin-Incorporated Multilayer Nanofibers Accelerate Chronic Wound Healing by Remodeling the Harsh Wound Microenvironment

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

The harsh microenvironment in wound (HMW) remains a major obstacle to chronic wound healing. Although a series of bioactive materials have been developed, few of them are multi-functional and able to accelerate wound healing via precisely remodeling the HMW. Herein, a series of dihydromyricetin (DHM)-incorporated multilayer nanofibers (termed DQHP-n, n = 0, 2, 6 and 10) are fabricated using a layer-by-layer (LBL) self-assembly technique. The average diameters of DQHP-n significantly increase from 0.30 ± 0.16 μm to 0.84 ± 0.28 μm (P < 0.05) along with the n value increased from 0 to 10, the tensile strength of that is also significantly improved from 1.12 ± 0.15 MPa to 2.16 ± 0.30 MPa (P < 0.05), and the water contact angle of that significantly decreases from 129.1 ± 1.5° to 76.6 ± 3.9° (P < 0.05). The DQHP-n are found to be biocompatible, in which DQHP-6 promoted cell migration through activation of the epithelial–mesenchymal transformation (EMT) pathway and reconstruction of the HMW by stopping bleeding, killing bacteria, eliminating inflammation, and scavenging reactive oxygen species (ROS). The in vivo evaluation is carried out via an E. coli-infected rat skin regeneration model. The DQHP-6 group demonstrates the best effect, as it healed up to 98.5 ± 1.0% of the wound area at day 15. DQHP-6 differentially regulates the mRNA expressions of several cytokines (FGF2, PDGF, IL-1α, IL-6, IL10, and TGF-β), which ends to reductions of total inflammatory cells (CD45+ cells) and M1 macrophages (CD80+ and CD86+ cells), proliferation of host cell (Ki67+ cells), and enhancement of collagen synthesis. In conclusion, DQHP-6 exhibits multifunctional properties for HMW, and can serve as a promising wound dressing for clinical transformation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HMW:

Harsh Microenvironment in Wound

DHM:

Dihydromyricetin

QC:

Quaternized chitosan

HA:

hyaluronic acid

LBL:

Layer-by-layer

EMT:

Epithelial–mesenchymal transformation

ROS:

Reactive oxygen species

CSI:

Chronic skin injuries

TEWDs:

Tissue engineering wound dressings

ECM:

Extracellular matrix

PCL:

Polycaprolactone

FGF2:

fibroblast growth factor-2

PDGF:

Platelet-derived growth factor

TCBs:

Traditional Chinese herbs

FDA:

the Food and Drug administration

NMPA:

National Medical Products Administration

FT-IR:

Fourier transform infrared spectrum

XRD:

X-ray diffraction spectrum

NS:

Normal saline

E. coli :

Escherichia coli

S. aureus :

Staphylococcus aureus

MRSA:

Methicillin-resistant Staphylococcus aureus

NO:

Nitric oxide

HR:

Hemolysis ratio.

References

  1. Zeng QK, Qian YN, Huang YJ, Ding F, Qi XL, Shen JL. Polydopamine nanoparticle-dotted food gum hydrogel with excellent antibacterial activity and rapid shape adaptability for accelerated bacteria-infected wound healing. Bioactive Mater. 2021;6:2647.

    Article  CAS  Google Scholar 

  2. Liang YP, He JH, Guo BL. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano. 2021;15:12687.

    Article  CAS  Google Scholar 

  3. Chen JH, Bao XF, Meng T, Sun J, Yang XR. Zeolitic imidazolate framework-67 accelerates infected diabetic chronic wound healing. Chem Eng J. 2022;430:10.

    Article  Google Scholar 

  4. Wang ZJ, Ke MF, He L, Dong Q, Liang X, Rao J, Ai JJ, Tian C, Han XW, Zhao YA. Biocompatible and antibacterial soy protein isolate/quaternized chitosan composite sponges for acute upper gastrointestinal hemostasis. Regenerative Biomater. 2021;8:12.

    Article  Google Scholar 

  5. Vos T, Allen C, Arora M, Barber RM, Bhutta ZA, Brown A, Carter A, Casey DC, Charlson FJ, Chen AZ. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1545.

    Article  Google Scholar 

  6. Kim H, Wang SY, Kwak G, Yang Y, Kwon IC, Kim SH. Exosome-guided phenotypic switch of M1 to M2 macrophages for cutaneous wound healing. Adv Sci. 2019;6:13.

    Article  Google Scholar 

  7. Kim K, Mahajan A, Patel K, Syed S, Acevedo-Jake AM, Kumar VA. Materials and cytokines in the healing of diabetic foot ulcers. Adv Ther. 2021;4:18.

    Google Scholar 

  8. Mao JY, Chen L, Cai ZW, Qian ST, Liu ZM, Zhao BF, Zhang YG, Sun XM, Cui WG. Advanced biomaterials for regulating polarization of macrophages in wound healing. Adv Funct Mater. 2021;25:2111003.

    Google Scholar 

  9. Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019;99:665.

    Article  CAS  Google Scholar 

  10. Xu ZJ, Han SY, Gu ZP, Wu J. Advances and impact of antioxidant hydrogel in chronic wound healing. Adv Healthc Mater. 2020;9:11.

    Article  Google Scholar 

  11. Ahmed MK, Zayed MA, El-dek SI, Hady MA, El Sherbiny DH, Uskokovic V. Nanofibrous epsilon-polycaprolactone scaffolds containing Ag-doped magnetite nanoparticles: physicochemical characterization and biological testing for wound dressing applications in vitro and in vivo. Bioactive Mater. 2021;6:2070.

    Article  CAS  Google Scholar 

  12. Yang ZF, Huang RK, Zheng BN, Guo WT, Li CK, He WY, Wei YG, Du Y, Wang HM, Wu DC, Wang H. Highly stretchable, adhesive, biocompatible, and antibacterial hydrogel dressings for wound healing. Adv Sci. 2021;8:12.

    Article  Google Scholar 

  13. El-Aassar MR, Ibrahim OM, Fouda MMG, Fakhry H, Ajarem J, Maodaa SN, Allam AA, Hafez EE. Wound dressing of chitosan-based-crosslinked gelatin/ polyvinyl pyrrolidone embedded silver nanoparticles, for targeting multidrug resistance microbes. Carbohydr Polym. 2021;255:12.

    Article  Google Scholar 

  14. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233:6425.

    Article  CAS  Google Scholar 

  15. Kim YE, Kim J. ROS-scavenging therapeutic hydrogels for modulation of the inflammatory response. ACS Appl Mater Interfaces. 2022. https://doi.org/10.1021/acsami.1c18261.

    Article  Google Scholar 

  16. Ke MF, Wang ZJ, Dong Q, Chen FX, He L, Huselstein C, Wang XH, Chen Y. Facile fabrication of soy protein isolate-functionalized nanofibers with enhanced biocompatibility and hemostatic effect on full-thickness skin injury. Nanoscale. 2021;13:15743.

    Article  CAS  Google Scholar 

  17. Zhang BL, Gao Y, Yang R, Ouyang ZJ, Yu HW, Wang H, Shi XY, Shen MW. Tumor-anchoring drug-loaded fibrous microspheres for MR imaging-guided local chemotherapy and metastasis inhibition. Adv Fiber Mater. 2022. https://doi.org/10.1007/s42765-022-00137-8.

    Article  Google Scholar 

  18. He H, Wu MA, Zhu JW, Yang YY, Ge RL, Yu DG. Engineered spindles of little molecules around electrospun nanofibers for biphasic drug release. Adv Fiber Mater. 2022;4:305.

    Article  CAS  Google Scholar 

  19. Liu YB, Chen XH, Liu YY, Gao YH, Liu P. Electrospun coaxial fibers to optimize the release of poorly water-soluble drug. Polymers. 2022;14:13.

    Google Scholar 

  20. Wang ML, Hou JS, Yu DG, Li SY, Zhu JW, Chen ZZ. Electrospun tri-layer nanodepots for sustained release of acyclovir. J Alloys Compd. 2020;846:9.

    Article  Google Scholar 

  21. Zhang MX, Song WL, Tang YX, Xu XZ, Huang YN, Yu DG. Polymer-based nanofiber-nanoparticle hybrids and their medical applications. Polymers. 2022;14:27.

    CAS  Google Scholar 

  22. Yu DG, Wang ML, Ge RL. Strategies for sustained drug release from electrospun multi-layer nanostructures. Wiley Interdisc Rev-Nanomed Nanobiotechnol. 2021;14:27.

    Google Scholar 

  23. Wang MY, Tan YL, Li D, Xu GW, Yin D, Xiao YC, Xu TG, Chen XF, Zhu XY, Shi XY. Negative isolation of circulating tumor cells using a microfluidic platform integrated with streptavidin-functionalized PLGA nanofibers. Adv Fiber Mater. 2021;3:192.

    Article  CAS  Google Scholar 

  24. Shen YZ, Zhang YY, Gao ZF, Ye YW, Wu QP, Chen HY, Xu JJ. Recent advances in nanotechnology for simultaneous detection of multiple pathogenic bacteria. Nano Today. 2021;38:26.

    Article  Google Scholar 

  25. Wang ZJ, Hu WK, You WJ, Huang G, Tian WQ, Huselstein C, Wu CL, Xiao Y, Chen Y, Wang XH. Antibacterial and angiogenic wound dressings for chronic persistent skin injury. Chem Eng J. 2021;404:13.

    Article  Google Scholar 

  26. Wagberg L, Erlandsson J. The use of layer-by-layer self-assembly and nanocellulose to prepare advanced functional materials. Adv Mater. 2021;33:13.

    Article  Google Scholar 

  27. Hu WK, Wang ZJ, Zha Y, Gu X, You WJ, Xiao Y, Wang XH, Zhang SM, Wang JL. High flexible and broad antibacterial nanodressing induces complete skin repair with angiogenic and follicle regeneration. Adv Healthc Mater. 2020;9:13.

    Article  Google Scholar 

  28. Tu YY. Artemisinin-A Gift from Traditional Chinese Medicine to the World (Nobel Lecture). Angewandte Chemie-Int Edition. 2016;55:10210.

    Article  CAS  Google Scholar 

  29. Chi J, Sun L, Cai L, Fan L, Shao C, Shang L, Zhao Y. Chinese herb microneedle patch for wound healing. Bioactive Mater. 2021;6:3507.

    Article  CAS  Google Scholar 

  30. Geng S, Jiang ZJ, Ma HJ, Pu P, Liu BG, Liang GZ. Fabrication and characterization of novel edible Pickering emulsion gels stabilized by dihydromyricetin. Food Chem. 2021;343:10.

    Article  Google Scholar 

  31. Zhang JY, Chen Y, Luo HQ, Sun LL, Xu MT, Yu J, Zhou QG, Meng GL, Yang SJ. Recent update on the pharmacological effects and mechanisms of dihydromyricetin. Front Pharmacol. 2018;9:11.

    Article  Google Scholar 

  32. Sun Y, Liu SS, Yang SW, Chen C, Yang YT, Lin MY, Liu C, Wang WM, Zhou XD, Ai QD, Wang W, Chen NH. Mechanism of dihydromyricetin on inflammatory diseases. Front Pharmacol. 2022;12:10.

    Article  CAS  Google Scholar 

  33. Liu D, Mao YQ, Ding LJ, Zeng XA. Dihydromyricetin. A review on identification and quantification methods, biological activities, chemical stability, metabolism and approaches to enhance its bioavailability. Trends Food Sci Technol. 2019;91:586.

    Article  CAS  Google Scholar 

  34. Castro KC, Campos MGN, Mei LHI. Hyaluronic acid electrospinning: challenges, applications in wound dressings and new perspectives. Int J Biol Macromol. 2021;173:251.

    Article  CAS  Google Scholar 

  35. Hu W, Wang Z, Zha Y, Gu X, You W, Xiao Y, Wang X, Zhang S, Wang J. High flexible and broad antibacterial nanodressing induces complete skin repair with angiogenic and follicle regeneration. Adv Healthc Mater. 2020. https://doi.org/10.1002/adhm.202000035.

    Article  Google Scholar 

  36. Ao HY, Yang SB, Nie BE, Fan QM, Zhang QC, Zong JJ, Guo SR, Zheng XB, Tang TT. Improved antibacterial properties of collagen I/hyaluronic acid/quaternized chitosan multilayer modified titanium coatings with both contact-killing and release-killing functions. J Mater Chem B. 2019;7:1951.

    Article  CAS  Google Scholar 

  37. Liu MM, Guo H, Li ZY, Zhang CH, Zhang XP, Cui QH, Tian JZ. Molecular level insight into the benefit of myricetin and dihydromyricetin uptake in patients with Alzheimer’s diseases. Front Aging Neurosci. 2020;12:12.

    Article  Google Scholar 

  38. Freitas ED, Moura CF, Kerwald J, Beppu MM. An overview of current knowledge on the properties, synthesis and applications of quaternary chitosan derivatives. Polymers. 2020;12:41.

    Article  Google Scholar 

  39. Shevelev AB, La Porta N, Isakova EP, Martens S, Biryukova YK, Belous AS, Sivokhin DA, Trubnikova EV, Zylkova MV, Belyakova AV, Smirnova MS, Deryabina YI. Vivo antimicrobial and wound-healing activity of resveratrol, dihydroquercetin, and dihydromyricetin against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. Pathogens. 2020;9:22.

    Article  Google Scholar 

  40. Lv C, Li L, Jiao Z, Yan H, Wang Z, Wu Z, Guo M, Wang Y, Zhang P. Improved hemostatic effects by Fe3 + modified biomimetic PLLA cotton-like mat via sodium alginate grafted with dopamine. Bioactive Mater. 2021;6:2346.

    Article  CAS  Google Scholar 

  41. Liang YP, Zhao X, Hu TL, Chen BJ, Yin ZH, Ma PX, Guo BL. Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing. Small. 2019;15:17.

    Article  Google Scholar 

  42. Palmieri EM, Gonzalez-Cotto M, Baseler WA, Davies LC, Ghesquiere B, Maio N, Rice CM, Rouault TA, Cassel T, Higashi RM, Lane AN, Fan TWM, Wink DA, McVicar DW. Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase. Nat Commun. 2020;11:17.

    Article  Google Scholar 

  43. Jin K, Luo ZM, Zhang B, Pang ZQ. Biomimetic nanoparticles for inflammation targeting. Acta Pharm Sinica B. 2018;8:23.

    Article  Google Scholar 

  44. Pan YY, Yu YD, Wang XJ, Zhang T. Tumor-associated macrophages in tumor immunity. Front Immunol. 2020;11:9.

    Article  Google Scholar 

  45. Li XY, Guo XM, Ling JB, Tang Z, Huang GN, He LZ, Chen TF. Nanomedicine-based cancer immunotherapies developed by reprogramming tumor-associated macrophages. Nanoscale. 2021;13:4705.

    Article  CAS  Google Scholar 

  46. Martin KE, Garcia AJ. Macrophage phenotypes in tissue repair and the foreign body response: implications for biomaterial-based regenerative medicine strategies. Acta Biomaterialia. 2021. https://doi.org/10.1016/j.actbio.2021.03.038.

    Article  Google Scholar 

  47. Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, Lu L, Yao ZY, Goodman SB. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials. 2019;196:80.

    Article  CAS  Google Scholar 

  48. Funes SC, Rios M, Escobar-Vera J, Kalergis AM. Implications of macrophage polarization in autoimmunity. Immunology. 2018;154:186.

    Article  CAS  Google Scholar 

  49. Zhang BL, He JH, Shi MT, Liang YQ, Guo BL. Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity to enhance complete skin regeneration. Chem Eng J. 2020;400:14.

    Article  Google Scholar 

  50. Qiao Y, He J, Chen WY, Yu YH, Li WL, Du Z, Xie TT, Ye Y, Hua SY, Zhong DN, Yao K, Zhou M. Light-activatable synergistic therapy of drug-resistant bacteria-infected cutaneous chronic wounds and nonhealing keratitis by cupriferous hollow nanoshells. ACS Nano. 2020;14:3299.

    Article  CAS  Google Scholar 

  51. Zhang J, Zheng YJ, Lee J, Hua JY, Li SL, Panchamukhi A, Yue JP, Gou XW, Xia ZF, Zhu LY, Wu XY. A pulsatile release platform based on photo-induced imine-crosslinking hydrogel promotes scarless wound healing. Nat Commun. 2021;12:13.

    Google Scholar 

  52. Rao L, Zhao SK, Wen CR, Tian R, Lin LS, Cai B, Sun Y, Kang F, Yang Z, He LC, Mu J, Meng QF, Yao GY, Xie N, Chen XY. Activating macrophage-mediated cancer immunotherapy by genetically edited nanoparticles. Adv Mater. 2020;32:9.

    Article  Google Scholar 

  53. Ellis MJ, Suman VJ, Hoog J, Goncalves R, Sanati S, Creighton CJ, DeSchryver K, Crouch E, Brink A, Watson M. Ki67 proliferation index as a tool for chemotherapy decisions during and after neoadjuvant aromatase inhibitor treatment of breast cancer: results from the American College of Surgeons Oncology Group Z1031 Trial (Alliance). J Clin Oncol. 2017;35:1061.

    Article  CAS  Google Scholar 

  54. Wang Z, Guo Z, You W, Wang W, Zhou F, Zhang R, He Z, Chen H, Wang X. Identification of chemotherapeutic dihydromyricetin with enhanced anti-tumor activity and biosafety for muscle invasive bladder cancer. Res Square. 2021;25(2):152–65.

    Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Weikang Hu from Huazhong University of Science and Technology for the great support. This work was financially supported by the Fellowship of China National Postdoctoral Program for Innovative Talants (BX20220240), the Improvement Project for Theranostic Ability on Difficulty Miscellaneous Disease (Tumor) from National Health Commission of China (ZLYNXM202006), the Chinese Central Special Fund for Local Science and Technology Development of Hubei Province (2018ZYYD023), and the Science and Technology Department of Hubei Province Key Project (2018ACA159).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Chen or Xinghuan Wang.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., You, W., Wang, W. et al. Dihydromyricetin-Incorporated Multilayer Nanofibers Accelerate Chronic Wound Healing by Remodeling the Harsh Wound Microenvironment. Adv. Fiber Mater. 4, 1556–1571 (2022). https://doi.org/10.1007/s42765-022-00180-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00180-5

Keywords

Navigation