Skip to main content

Advertisement

Log in

Photothermal-Triggered Structural Change of Nanofiber Scaffold Integrating with Graded Mineralization to Promote Tendon–Bone Healing

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Scaffolds functionalized with graded changes in both fiber alignment and mineral content are more appealing for tendon-bone healing. This study reports the healing of rotator cuff injury using a heterogeneous nanofiber scaffold, which is associated with a structural gradating from aligned to random and an increasing gradient of mineral content in the same orientation. The photothermal-triggered structural change of a nanofiber scaffold followed by graded mineralization is key to constructing such scaffolds. This type of scaffold was found to be biocompatible and provide beneficial contact guidance in the manipulation of tendon-derived stem cell morphologies in vitro. Specifically, tenogenic and osteogenic differentiation of tendon-derived stem cells were simultaneously achieved using the fabricated scaffold. In vivo investigation also showed the improved healing of rabbit rotator cuff injuries based on immunohistochemical analysis and biomechanical investigation that indicates the promising potential of a dual-gradient nanofiber scaffold in clinical tendon-bone healing.

Graphical abstract

Dual-gradient nanofiber scaffold with transitions in both surface structure and mineral content was designed and manufactured to replicate the native interface between tendon and bone to facilitate the tendon-bone healing in a rabbit rotator cuff injury model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tashjian RZ. Epidemiology, natural history, and indications for treatment of rotator cuff tears. Clin Sports Med 2012;31:589–604.

    Article  Google Scholar 

  2. Iannotti JP, Deutsch A, Green A, Rudicel S, Christensen J, Marraffino S, Rodeo S. Time to failure after rotator cuff repair: a prospective imaging study. J Bone Joint Surg Am 2013;95:965–71.

    Article  Google Scholar 

  3. Neri BR, Chan KW, Kwon YW. Management of massive and irreparable rotator cuff tears. J Shoulder Elbow Surg 2009;18:808–18.

    Article  Google Scholar 

  4. Pennisi E. Tending tender tendons. Science 2002;295:1011.

    Article  CAS  Google Scholar 

  5. Butler DL, Juncosa N, Dressler MR. Functional efficacy of tendon repair processes. Annu Rev Biomed Eng 2004;6:303–29.

    Article  CAS  Google Scholar 

  6. Lin Y, Zhang L, Liu NQ, Yao Q, Van Handel B, Xu Y, Wang C, Evseenko D, Wang L. In vitro behavior of tendon stem/progenitor cells on bioactive electrospun nanofiber membranes for tendon-bone tissue engineering applications. Int J Nanomed 2019;14:5831–48.

    Article  CAS  Google Scholar 

  7. Tang Y, Chen C, Liu F, Xie S, Qu J, Li M, Li Z, Li X, Shi Q, Li S, Li X, Hu J, Lu H. Structure and ingredient-based biomimetic scaffolds combining with autologous bone marrow-derived mesenchymal stem cell sheets for bone-tendon healing. Biomaterials 2020;241:119837.

    Article  CAS  Google Scholar 

  8. Chae S, Sun Y, Choi YJ, Ha DH, Jeon IH, Cho DW. 3D cell-printing of tendon-bone interface using tissue-derived extracellular matrix bioinks for chronic rotator cuff repair. Biofabrication 2021;13:035005.

    Article  CAS  Google Scholar 

  9. Rothrauff BB, Yang G, Tuan RS. Tissue-specific bioactivity of soluble tendon-derived and cartilage-derived extracellular matrices on adult mesenchymal stem cells. Stem Cell Res Ther 2017;8:133.

    Article  CAS  Google Scholar 

  10. Xie J, Li X, Lipner J, Manning CN, Schwartz AG, Thomopoulos S, Xia Y. “Aligned-to-random” nanofiber scaffolds for mimicking the structure of the tendon-to-bone insertion site. Nanoscale 2010;2:923–6.

    Article  CAS  Google Scholar 

  11. Kishan AP, Robbins AB, Mohiuddin SF, Jiang M, Moreno MR, Cosgriff-Hernandez EM. Fabrication of macromolecular gradients in aligned fiber scaffolds using a combination of in-line blending and air-gap electrospinning. Acta Biomater 2017;56:118–28.

    Article  CAS  Google Scholar 

  12. Li H, Wu T, Xue J, Ke Q, Xia Y. Transforming nanofiber mats into hierarchical scaffolds with graded changes in porosity and/or nanofiber alignment. Macromol Rapid Commun 2020;41:e1900579.

    Article  CAS  Google Scholar 

  13. Li X, Cheng R, Sun Z, Su W, Pan G, Zhao S, Zhao J, Cui W. Flexible bipolar nanofibrous membranes for improving gradient microstructure in tendon-to-bone healing. Acta Biomater 2017;61:204–16.

    Article  CAS  Google Scholar 

  14. Chen W, Sun Y, Gu X, Cai J, Liu X, Zhang X, Chen J, Hao Y, Chen S. Conditioned medium of human bone marrow-derived stem cells promotes tendon-bone healing of the rotator cuff in a rat model. Biomaterials 2021;271:120714.

    Article  CAS  Google Scholar 

  15. Laranjeira M, Domingues RMA, Costa-Almeida R, Reis RL, Gomes ME. 3D mimicry of native-tissue-fiber architecture guides tendon-derived cells and adipose stem cells into artificial tendon constructs. Small 2017;13:1700689.

    Article  CAS  Google Scholar 

  16. Lui PP, Chan KM. Tendon-derived stem cells (TDSCs): from basic science to potential roles in tendon pathology and tissue engineering applications. Stem Cell Rev Rep 2011;7:883–97.

    Article  CAS  Google Scholar 

  17. Wu T, Li H, Xue J, Mo X, Xia Y. Photothermal welding, melting, and patterned expansion of nonwoven mats of polymer nanofibers for biomedical and printing applications. Angew Chem Int Ed Engl 2019;58:16416–21.

    Article  CAS  Google Scholar 

  18. Li X, Xie J, Lipner J, Yuan X, Thomopoulos S, Xia Y. Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett 2009;9:2763–8.

    Article  CAS  Google Scholar 

  19. Tas AC, Bhaduri SB. Rapid coating of Ti6Al4V at room temperature with a calcium phosphate solution similar to 10× simulated body fluid. J Mater Res 2004;19:2742–9.

    Article  CAS  Google Scholar 

  20. Yamaguchi K, Ditsios K, Middleton WD, Hildebolt CF, Galatz LM, Teefey SA. The demographic and morphological features of rotator cuff disease. A comparison of asymptomatic and symptomatic shoulders. J Bone Joint Surg Am 2006;88:1699–704.

    Article  Google Scholar 

  21. Isaksson H, Harjula T, Koistinen A, Iivarinen J, Seppänen K, Arokoski JP, Brama PA, Jurvelin JS, Helminen HJ. Collagen and mineral deposition in rabbit cortical bone during maturation and growth: effects on tissue properties. J Orthop Res 2010;28:1626–33.

    Article  CAS  Google Scholar 

  22. Otarodifard K, Wong J, Preston CF, Tibone JE, Lee TQ. Relative fixation strength of rabbit subscapularis repair is comparable to human supraspinatus repair at time. Clin Orthop Relat Res 2014;472:2440–7.

    Article  Google Scholar 

  23. Grumet RC, Hadley S, Diltz MV, Lee TQ, Gupta R. Development of a new model for rotator cuff pathology: the rabbit subscapularis muscle. Acta Orthop 2009;80:97–103.

    Article  Google Scholar 

  24. Jing Z, Dexin T, Zihan L, et al. Ultrafast bone-like apatite formation on highly porous poly(l-lactic acid)-hydroxyapatite fibres. Mater Sci Eng C Mater Biol Appl 2020;116:111168.

    Article  CAS  Google Scholar 

  25. Liu W, Lipner J, Xie J, Manning CN, Thomopoulos S, Xia Y. Nanofiber scaffolds with gradients in mineral content for spatial control of osteogenesis. ACS Appl Mater Interfaces 2014;6:2842–9.

    Article  CAS  Google Scholar 

  26. Yang G, Yao Y, Wang X. Comparative study of kerateine and keratose based composite nanofibers for biomedical applications. Mater Sci Eng C Mater Biol Appl 2018;83:1–8.

    Article  CAS  Google Scholar 

  27. Dong Y, Zheng Y, Zhang K, Yao Y, Wang L, Li X, Yu J, Ding B. Electrospun nanofibrous materials for wound healing. Adv Fiber Mater 2020;2:212–27.

    Article  CAS  Google Scholar 

  28. Li Y, Shen Q, Shen J, Ding X, Liu T, He J, Zhu CY, Zhao D, Zhu JD. Multifunctional fibroblasts enhanced via thermal and freeze-drying post-treatments of aligned electrospun nanofiber membranes. Adv Fiber Mater 2021;3:1–16.

    Article  CAS  Google Scholar 

  29. Biehl JK, Yamanaka S, Desai TA, Boheler KR, Russell B. Proliferation of mouse embryonic stem cell progeny and the spontaneous contractile activity of cardiomyocytes are affected by microtopography. Dev Dyn 2009;238:1964–73.

    Article  CAS  Google Scholar 

  30. Brassard JA, Lutolf MP. Engineering stem cell self-organization to build better organoids. Cell Stem Cell 2019;24:860–76.

    Article  CAS  Google Scholar 

  31. Huang AH, Lu HH, Schweitzer R. Molecular regulation of tendon cell fate during development. J Orthop Res 2015;33:800–12.

    Article  Google Scholar 

  32. Järvinen TA, Kannus P, Järvinen TL, Jozsa L, Kalimo H, Järvinen M. Tenascin-C in the pathobiology and healing process of musculoskeletal tissue injury. Scand J Med Sci Sports 2000;10:376–82.

    Article  Google Scholar 

  33. Lin B, Srikanth P, Castle AC, Nigwekar S, Malhotra R, Galloway JL, Sykes DB, Rajagopal J. Modulating cell fate as a therapeutic strategy. Cell Stem Cell 2018;23:329–41.

    Article  CAS  Google Scholar 

  34. Yin Z, Chen X, Chen JL, Shen WL, Hieu Nguyen TM, Gao L, Ouyang HW. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials 2010;31:2163–75.

    Article  CAS  Google Scholar 

  35. Nourissat G, Berenbaum F, Duprez D. Tendon injury: from biology to tendon repair. Nat Rev Rheumatol 2015;11:223–33.

    Article  Google Scholar 

  36. He SK, Ning LJ, Yao X, Hu RN, Cui J, Zhang Y, Ding W, Luo JC, Qin TW. Hierarchically demineralized cortical bone combined with stem cell-derived extracellular matrix for regeneration of the tendon-bone interface. Am J Sports Med 2021;49:1323–32.

    Article  Google Scholar 

  37. Massaro MS, Pálek R, Rosendorf J, Červenková L, Liška V, Moulisová V. Decellularized xenogeneic scaffolds in transplantation and tissue engineering: immunogenicity versus positive cell stimulation. Mater Sci Eng C Mater Biol Appl 2021;127:112203.

    Article  CAS  Google Scholar 

  38. Qu D, Mosher CZ, Boushell MK, Lu HH. Engineering complex orthopaedic tissues via strategic biomimicry. Ann Biomed Eng 2015;43:697–717.

    Article  Google Scholar 

  39. Hirose K, Kondo S, Choi HR, Mishima S, Iwata H, Ishiguro N. Spontaneous healing process of a supraspinatus tendon tear in rabbits. Arch Orthop Trauma Surg 2004;124:374–7.

    Article  Google Scholar 

  40. Shi D, Shen J, Zhang Z, Shi C, Chen M, Gu Y, Liu Y. Preparation and properties of dopamine-modified alginate/chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering. J Biomed Mater Res A 2019;107:1615–27.

    CAS  Google Scholar 

  41. Kim BJ, Cho YW, Jo CH. Regeneration of the rotator cuff tendon-to-bone interface using umbilical cord-derived mesenchymal stem cells and gradient extracellular matrix scaffolds from adipose tissue in a rat model. Acta Biomater 2020;114:104–16.

    Article  CAS  Google Scholar 

  42. Baldino L, Cardea S, Maffulli N, Reverchon E. Regeneration techniques for bone-to-tendon and muscle-to-tendon interfaces reconstruction. Br Med Bull 2016;117:25–37.

    Article  Google Scholar 

  43. Nowlin J, Bismi MA, Delpech B, Dumas P, Zhou Y, Tan GZ. Engineering the hard-soft tissue interface with random-to-aligned nanofiber scaffolds. Nanobiomedicine 2018;5:1849543518803538.

    Article  Google Scholar 

  44. Xie J, Ma B, Michael PL, Shuler FD. Fabrication of nanofiber scaffolds with gradations in fiber organization and their potential applications. Macromol Biosci 2012;12:1336–41.

    Article  CAS  Google Scholar 

  45. Samavedi S, Vaidya P, Gaddam P, Whittington AR, Goldstein AS. Electrospun meshes possessing region-wise differences in fiber orientation, diameter, chemistry and mechanical properties for engineering bone-ligament-bone tissues. Biotechnol Bioeng 2014;111:2549–59.

    Article  CAS  Google Scholar 

  46. Yang R, Li G, Zhuang C, Yu P, Ye T, Zhang Y, Shang P, Huang J, Cai M, Wang L, Cui W, Deng L. Gradient bimetallic ion-based hydrogels for tissue microstructure reconstruction of tendon-to-bone insertion. Sci Adv 2021;7:3816.

    Article  CAS  Google Scholar 

  47. Wu T, Xue J, Li H, Zhu C, Mo X, Xia Y. General method for generating circular gradients of active proteins on nanofiber scaffolds sought for wound closure and related applications. ACS Appl Mater Interfaces 2018;10:8536–45.

    Article  CAS  Google Scholar 

  48. Xue J, Wu T, Qiu J, Rutledge S, Tanes ML, Xia Y. promoting cell migration and neurite extension along uniaxially aligned nanofibers with biomacromolecular particles in a density gradient. Adv Funct Mater 2020;30:2002031.

    Article  CAS  Google Scholar 

  49. Ma J, Smietana MJ, Kostrominova TY, Wojtys EM, Larkin LM, Arruda EM. Three-dimensional engineered bone-ligament-bone constructs for anterior cruciate ligament replacement. Tissue Eng Part A 2012;18:103–16.

    Article  CAS  Google Scholar 

  50. Elst L, Lima C, Kurtoglu MG, Koraganji VN, Zheng MG, Gumennik A. 3D printing in fiber-device technology. Adv Fiber Mater 2021;3:59–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (31872310, 82001970), Natural Science Foundation of Shandong Province (ZR2019MH097, ZR2021YQ17), Young Elite Scientists Sponsorship Program by CAST (No. YESS20200097), and startup funds from Qingdao University (T.W.).

Author information

Authors and Affiliations

Authors

Contributions

CY: methodology, formal analysis, data curation, software, writing-original draft. TW: methodology. HD: formal analysis, writing-original draft. NL: methodology, writing-review & editing. YZ: formal analysis. HJ: methodology, writing-original draft. PZ: methodology. ZS: methodology. ZS: methodology. TW: conceptualization, methodology, resources, supervision, funding acquisition, writing-review & editing. XM: conceptualization, resources. TY: project administration, resources, supervision, funding acquisition.

Corresponding authors

Correspondence to Tong Wu or Tengbo Yu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1675 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Wang, T., Diao, H. et al. Photothermal-Triggered Structural Change of Nanofiber Scaffold Integrating with Graded Mineralization to Promote Tendon–Bone Healing. Adv. Fiber Mater. 4, 908–922 (2022). https://doi.org/10.1007/s42765-022-00154-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00154-7

Keywords

Navigation