Skip to main content
Log in

Surface-Enhanced Raman Scattering Fiber Probe Based on Silver Nanocubes

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman scattering (SERS) provides a novel method for low concentration molecular detection. The performances were highly dependent on the sizes, geometries and distributions of metal nanostructures. Here, highly sensitive SERS fiber probe based on silver nanocubes (Ag NCs) was fabricated, by assembled nanostructures on planar and tapered fiber tips. Ag NCs were synthesized by polyol method, and controlled by reductant content, reaction temperatures and crystal growth durations. Tapered fibers with different cone angles were prepared by chemical etching. The electromagnetic distribution simulation indicated that nanocubes had stronger electric field between two cubes and vertex corners than nanosphere, under 532 nm laser excitation. The intensity could reach 53.52 V/m, for cubes with 70 nm edge length. The SERS performance of probes was characterized using crystal violet analyte. The detectable lowest concentration could reach 10–9 and 10–10 M for planar and tapered fiber probes, respectively. The corresponding enhancement factor could be 9.02 × 107 and 6.22 × 108. The relationship between SERS peak intensities and analyte concentrations showed well linear, which indicated both fiber probes could be applied for both qualitative and quantitative analysis. Furthermore, optimal cone angle of tapered fiber SERS probe was 8.3°. The tapered fiber SERS probes have highly sensitive activity and great potential in substance detection.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu X, Knauer M, Ivleva NP, Niessner R, Haisch C. Synthesis of core−shell surface-enhanced Raman tags for bioimaging. Anal Chem. 2010;82:441.

    Article  CAS  Google Scholar 

  2. Cao J, Zhao D, Qin Y. Novel strategy for fabrication of sensing layer on thiol-functionalized fiber-optic tapers and their application as SERS probes. Talanta. 2019;194:895.

    Article  CAS  Google Scholar 

  3. Xu H, Bjerneld EJ, Käll M, Börjesson L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett. 1999;83:4357.

    Article  CAS  Google Scholar 

  4. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett. 1997;78:1667.

    Article  CAS  Google Scholar 

  5. Jiang T, Wang B, Zhang L, Zhou J. Hydrothermal synthesis of silver nanocubes with tunable edge lengths and their size dependent SERS behaviors. J Alloy Compd. 2015;632:140.

    Article  CAS  Google Scholar 

  6. Rycenga M, Kim MH, Camargo PHC, Cobley C, Li Z-Y, Xia Y. Surface-enhanced Raman scattering: comparison of three different molecules on single-crystal nanocubes and nanospheres of silver. J Phys Chem A. 2009;113:3932.

    Article  CAS  Google Scholar 

  7. Rycenga M, Xia X, Moran CH, Zhou F, Qin D, Li ZY, Xia Y. Generation of hot spots with silver nanocubes for single-molecule detection by surface-enhanced Raman scattering. Angew Chem Int Ed. 2011;50:5473.

    Article  CAS  Google Scholar 

  8. Leru EC, Blackie E, Meyer M, Etchegoin PG. Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C. 2007;111:13794.

    Article  CAS  Google Scholar 

  9. Joseph D, Baskaran R, Yang SG, Huh YS, Han Y-K. Multifunctional spiky branched gold-silver nanostars with near-infrared and short-wavelength infrared localized surface plasmon resonances. J Colloid Interface Sci. 2019;542:308.

    Article  CAS  Google Scholar 

  10. McMahon JM, Wang Y, Sherry LJ, Van Duyne RP, Marks LD, Gray SK, Schatz GC. Correlating the structure, optical spectra, and electrodynamics of single silver nanocubes. J Phys Chem C. 2009;113:2731.

    Article  CAS  Google Scholar 

  11. Wang B, Zhang L, Zhou X. Synthesis of silver nanocubes as a SERS substrate for the determination of pesticide paraoxon and thiram. Spectrochim Acta Part A Mol Biomol Spectrosc. 2014;121:63.

    Article  CAS  Google Scholar 

  12. Wang Y, Lee K, Irudayaraj J. Silver nanosphere SERS probes for sensitive identification of pathogens. J Phys Chem C. 2010;114:16122.

    Article  CAS  Google Scholar 

  13. Rekha CR, Nayar VU, Gopchandran KG. Synthesis of highly stable silver nanorods and their application as SERS substrates. J Sci: Adv Mater Dev. 2018;3:196.

    Google Scholar 

  14. Wei W, Yixuan D, Liangmiao Z, Yong Y, Yanfeng G. Improving SERS hot spots for on-site pesticide detection by combining silver nanoparticles with nanowires. J Mater Chem C. 2018;6:8793.

    Article  CAS  Google Scholar 

  15. Garcia-Leis A, Garcia-Ramos JV, Sanchez-Cortes S. Silver nanostars with high SERS performance. J Phys Chem C. 2013;117:7791.

    Article  CAS  Google Scholar 

  16. Ben Jaber SS, Peveler WJ, Quesada Cabrera R, Sol CWO, Papakonstantinou I, Parkin IP. Sensitive and specific detection of explosives in solution and vapour by surface-enhanced Raman spectroscopy on silver nanocubes. Nanoscale. 2017;9:16459.

    Article  CAS  Google Scholar 

  17. Sherry LJ, Chang S-H, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett. 2005;5:2034.

    Article  CAS  Google Scholar 

  18. Pamela MB. Review of SERS substrates for chemical sensing. Nanomaterials. 2017;7:142.

    Article  Google Scholar 

  19. Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP. Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B. 2000;104:10549.

    Article  CAS  Google Scholar 

  20. Khodashenas B, Ghorbani HR. Synthesis of silver nanoparticles with different shapes. Arab J Chem. 2019;12:1823.

    Article  CAS  Google Scholar 

  21. Lu D, Fan M, Cai R, Huang Z, Lu Y. Silver nanocube coupling with a nanoporous silver film for dual-molecule recognition based ultrasensitive SERS detection of dopamine. Analyst. 2020;145:3009.

    Article  CAS  Google Scholar 

  22. Hwa B, Kbla B, Cxa B, Scx A, Ghla B. Large-scale solvothermal synthesis of Ag nanocubes with high SERS activity. J Alloy Compd. 2019;772:150.

    Article  Google Scholar 

  23. Zhou N, Meng G, Huang Z, Ke Y, Zhou Q, Hu X. A flexible transparent Ag-NC@PE film as a cut-and-paste SERS substrate for rapid in situ detection of organic pollutants. Analyst. 2016;141:5864.

    Article  CAS  Google Scholar 

  24. Zhu Y, Dluhy RA, Zhao Y. Development of silver nanorod array based fiber optic probes for SERS detection. Sens Actuat B Chem. 2011;157:42.

    Article  CAS  Google Scholar 

  25. Gessner R, Rösch P, Petry R, Schmitt M, Strehle MA, Kiefer W, Popp J. The application of a SERS fiber probe for the investigation of sensitive biological samples. Analyst. 2004;129:1193.

    Article  CAS  Google Scholar 

  26. Lucotti A, Zerbi G. Fiber-optic SERS sensor with optimized geometry. Sens Actuat B Chem. 2007;121:356.

    Article  CAS  Google Scholar 

  27. Polwart E, Keir RL, Davidson CM, Smith WE, Sadler DA. Novel SERS-active optical fibers prepared by the immobilization of silver colloidal particles. Appl Spectrosc. 2000;54:522.

    Article  CAS  Google Scholar 

  28. Wang X, Wolfbeis O. Fiber-optic chemical sensors and biosensors (2013–2015). Anal Chem. 2016;88:203.

    Article  CAS  Google Scholar 

  29. Long Y, Li H, Du Z, Geng M, Liu Z. Confined Gaussian-distributed electromagnetic field of SnCl2-sensitized SERS optical fiber probe: from LSPR to waveguide propagation. J Colloid Interface Sci. 2020;581:698.

    Article  Google Scholar 

  30. Gu C, Shi C, Yan H, Ghosh D, Seballos L, Chen S, Zhang J. Recent advance in fiber SERS sensors. Photon Fiber Crystal Dev. 2008;7056:70560H.

    Google Scholar 

  31. Yin Z, Geng Y, Xie Q, Hong X, Tan X, Chen Y, Wang L, Wang W, Li X. Photoreduced silver nanoparticles grown on femtosecond laser ablated, D-shaped fiber probe for surface-enhanced Raman scattering. Appl Opt. 2016;55:5408.

    Article  CAS  Google Scholar 

  32. Viets C, Hill W. Fibre-optic SERS sensors with conically etched tips. J Mol Struct. 2001;563:163.

    Article  Google Scholar 

  33. Dinish US, Fu CY, Soh KS, Ramaswamy B, Kumar A, Olivo M. Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber. Biosens Bioelectron. 2012;33:293.

    Article  Google Scholar 

  34. Zhang Q, Li W, Wen LP, Chen J, Xia Y. Facile synthesis of Ag nanocubes of 30 to 70 nm in edge length with CF3COOAg as a precursor. Chemistry. 2010;16:10234.

    Article  CAS  Google Scholar 

  35. Nakamura Y, Yamazaki R, Fukuda T, Shitajima K, Fujii S, Sasaki M. Structure of silane layer formed on silica particle surfaces by treatment with silane coupling agents having various functional groups. J Adhes Sci Technol. 2014;28:1895.

    Article  CAS  Google Scholar 

  36. Yu D, Yam V. Controlled synthesis of monodisperse silver nanocubes in water. J Am Chem Soc. 2004;126:13200.

    Article  CAS  Google Scholar 

  37. Wang Y, Zheng Y, Huang CZ, Xia Y. Synthesis of Ag nanocubes 18–32 nm in edge length: the effects of polyol on reduction kinetics, size control, and reproducibility. J Am Chem Soc. 1941;2013:135.

    Google Scholar 

  38. Siekkinen AR, McLellan JM, Chen J, Xia Y. Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chem Phys Lett. 2006;432:491.

    Article  CAS  Google Scholar 

  39. Im SH, Lee YT, Wiley B, Xia Y. Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angew Chem Int Ed Engl. 2005;44:2154.

    Article  CAS  Google Scholar 

  40. Bell RA, Kramer JR. Structural chemistry and geochemistry of silver-sulfur compounds: critical review. Environ Toxicol Chem. 1999;18:9.

    CAS  Google Scholar 

  41. Wang Y, Wan D, Xie S, Xia X, Xia Y. Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth. ACS Nano. 2013;7:4586.

    Article  CAS  Google Scholar 

  42. Frenken JWM, Stoltze P. Are vicinal metal surfaces stable? Phys Rev Lett. 1999;82:3500.

    Article  CAS  Google Scholar 

  43. Vitos L, Ruban AV, Skriver HL, Kollár J. The surface energy of metals. Surf Sci. 1998;411:186.

    Article  CAS  Google Scholar 

  44. Xia Y, Xiong Y, Lim B, Skrabalak SE. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed. 2009;48:60.

    Article  CAS  Google Scholar 

  45. Tao A, Sinsermsuksakul P, Yang P. Polyhedral silver nanocrystals with distinct scattering signatures. Angew Chem Int Ed. 2006;45:4597.

    Article  CAS  Google Scholar 

  46. Tao AR, Habas S, Yang P. shape control of colloidal metal nanocrystals. Small. 2008;4:310.

    Article  CAS  Google Scholar 

  47. Ben-Jaber S, Peveler WJ, Quesada-Cabrera R, Sol CWO, Papakonstantinou I, Parkin IP. Sensitive and specific detection of explosives in solution and vapour by surface-enhanced Raman spectroscopy on silver nanocubes. Nanoscale. 2017;9:16459.

    Article  CAS  Google Scholar 

  48. Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science. 2002;298:2176.

    Article  CAS  Google Scholar 

  49. Sun Y, Gates B, Mayers B, Xia Y. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002;2:165.

    Article  CAS  Google Scholar 

  50. Zhou F, Li Z-Y, Liu Y, Xia Y. Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles. J Phys Chem C. 2008;112:20233.

    Article  CAS  Google Scholar 

  51. Sosa IO, Noguez C, Barrera RG. Optical properties of metal nanoparticles with arbitrary shapes. J Phys Chem B. 2003;107:6269.

    Article  CAS  Google Scholar 

  52. Cañamares MV, Chenal C, Birke RL, Lombardi JR. DFT, SERS, and single-molecule SERS of crystal violet. J Phys Chem C. 2008;112:20295.

    Article  Google Scholar 

  53. Tian Y, Zhang H, Xu L, Chen M, Chen F. Self-assembled monolayers of bimetallic Au/Ag nanospheres with superior surface-enhanced Raman scattering activity for ultra-sensitive triphenylmethane dyes detection. Opt Lett. 2018;43:635.

    Article  CAS  Google Scholar 

  54. Huang Z, Lei X, Liu Y, Wang Z, Wang X, Wang Z, Mao Q, Meng G. Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application. ACS Appl Mater Interfaces. 2015;7:17247.

    Article  CAS  Google Scholar 

  55. Li T, Yu Z, Wang Z, Zhu Y, Zhang J. Optimized tapered fiber decorated by Ag nanoparticles for Raman measurement with high sensitivity. Sensors (Basel). 2021;21:2300.

    Article  CAS  Google Scholar 

  56. Liu L, Wu Y, Yin N, Zhang H, Ma H. Silver nanocubes with high SERS performance. J Quant Spectrosc Radiat Transf. 2020;240: 106682.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the opening funding of the state key laboratory of silicate materials for architecture (SYSJJ2018-06) and the Fundamental Research Funds for the Central Universities (WUT: 2016IVA096), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihong Zhang.

Ethics declarations

Conflict of Interest

The authors state that there are no conflicts of interest to disclose.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Tian, Q., He, G. et al. Surface-Enhanced Raman Scattering Fiber Probe Based on Silver Nanocubes. Adv. Fiber Mater. 3, 349–358 (2021). https://doi.org/10.1007/s42765-021-00106-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00106-7

Keywords

Navigation