Skip to main content
Log in

A Multifunctional Airflow Sensor Enabled by Optical Micro/nanofiber

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Fiber-optic anemometers have attracted an increasing attention over the past decade owing to their high sensitivity, wide dynamic range, low power consumption, and immunity to electromagnetic interference. However, expensive instruments may limit their practical applications. Herein, a new type of airflow sensor based on optical micro/nanofiber (MNF) is proposed and realized. The sensing element is a flexible polydimethylsiloxane (PDMS) cantilever embedded with a U-shaped MNF. Upon exposure to airflow, the induced deflection of the cantilever results in a bending-dependent transmittance variation of the embedded MNF. The performance of the sensor can be engineered by tuning the cantilever thickness and/or the MNF diameter. When four cantilevers are arranged in two orthogonal directions, the transmittance of each cantilever will be dependent on both flow speed and direction. By analysing the output signals of the four cantilevers, omnidirectional airflow with flow speed within 15 m/s were experimentally measured. In addition, a variety of voice and respiratory signals can be monitored and distinguished in real-time using an optimized cantilever with a resolution of 0.012 m/s, presenting great potential for health monitoring applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang AS, Su YM, Wen CY, Juan YH, Wang WS, Cheng CH. Estimation of wind power generation in dense Urban area. Appl Energy. 2016;171:213.

    Article  Google Scholar 

  2. Wang XQ, Chan KH, Cheng Y, Ding TP, Li TT, Achavananthadith S, Ahmet S, Ho JS, Ho GW. Somatosensory, light-Driven, thin-film robots capable of integrated perception and motility. Adv Mater. 2020;32:2000351.

    Article  CAS  Google Scholar 

  3. Wang HM, Li S, Wang YL, Wang HM, Shen XY, Zhang MC, Lu HJ, He MS, Zhang YY. Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor. Adv Mater. 2020;32:1908214.

    Article  CAS  Google Scholar 

  4. Guo JJ, Liu XY, Jiang N, Yetisen AK, Yuk H, Yang CX, Khademhosseini A, Zhao XH, Yun SH. Highly stretchable, strain sensing hydrogel optical fibers. Adv Mater. 2016;28:10244.

    Article  CAS  Google Scholar 

  5. Guo JJ, Zhou BQ, Zong R, Pan LS, Li XM, Yu XG, Yang CX, Kong L, Dai QH. Stretchable and highly sensitive optical strain sensors for human-activity monitoring and healthcare. ACS Appl Mater Interfaces. 2019;11:33589.

    Article  CAS  Google Scholar 

  6. Leal A, Avellar L, Frizera A, Marques C. Smart textiles for multimodal wearable sensing using highly stretchable multiplexed optical fiber system. Sci Rep. 2020;10:13867.

    Article  Google Scholar 

  7. Leal A, Campos V, Frizera A, Marques C. Low-cost and high-resolution pressure sensors using highly stretchable polymer optical fibers. Mater Lett. 2020;271:127810.

    Article  Google Scholar 

  8. Yan W, Dong CQ, Xiang YZ, Jiang S, Leber A, Loke G, Xu WX, Hou C, Zhou SF, Chen M, Hu R, Shum PP, Wei L, Jia X, Sorin F, Tao X, Tao G. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater Today. 2020;35:168.

    Article  CAS  Google Scholar 

  9. Dong CQ, Page AG, Yan W, Nguyen-Dang T, Sorin F. Microstructured multimaterial fibers for microfluidic sensing. Adv Mater Technol. 2019;4:1900417.

    Article  CAS  Google Scholar 

  10. Yan W, Qu YP, Das Gupta T, Darga A, Nguyen DT, Page AG, Rossi M, Ceriotti M, Sorin F. Semiconducting nanowire-based optoelectronic fibers. Adv Mater. 2017;29:1700681.

    Article  Google Scholar 

  11. Yan W, Richard I, Kurtuldu G, James ND, Schiavone G, Squair JW, Nguyen-Dang T, Das Gupta T, Qu YP, Cao JD, Ignatans R, Lacour SP, Tileli V, Courtine G, Loffler JF, Sorin F. Structured nanoscale metallic glass fibres with extreme aspect ratios. Nat Nanotechnol. 2020;15:875.

    Article  CAS  Google Scholar 

  12. Xing Y, Xu YM, Wu QL, Wang G, Zhu MF. Optoelectronic functional fibers: materials, fabrication, and application for smart textiles. J Mater Chem C. 2021;9:439.

    Article  CAS  Google Scholar 

  13. Lee B. Review of the present status of optical fiber sensors. Opt Fiber Technol. 2003;9:57.

    Article  CAS  Google Scholar 

  14. Takashima S, Asanuma H, Niitsuma H. Water Flowmeter Using dual fiber bragg grating sensors and cross-correlation technique. Sens Actuator A-Phys. 2004;116:66.

    Article  CAS  Google Scholar 

  15. Fujiwara E, Hayashi JG, Delfino TD, Jorge PAS, Cordeiro CMD. Optical fiber anemometer based on a multi-fbg curvature sensor. IEEE Sens J. 2019;19:8727.

    Article  Google Scholar 

  16. Frazão O, Viegas J, Caldas P, Santos JL, Araújo FM, Ferreira LA, Farahi F. All-fiber mach-zehnder curvature sensor based on multimode interference combined with a long-period grating. Opt Lett. 2007;32:3074.

    Article  Google Scholar 

  17. Lee CL, Lee CF, Li CM, Chiang TC, Hsiao YL. Directional anemometer based on an anisotropic flat-clad tapered fiber Michelson interferometer. Appl Phys Lett. 2012;101:023502.

    Article  Google Scholar 

  18. Gao SR, Zhang AP, Tam HY, Cho LH, Lu C. All-optical fiber anemometer based on laser heated fiber Bragg gratings. Opt Express. 2011;19:10124.

    Article  CAS  Google Scholar 

  19. Chen T, Wang QQ, Zhang BT, Chen RZ, Chen KP. Distributed flow sensing using optical hot -wire grid. Opt Express. 2012;20:8240.

    Article  Google Scholar 

  20. Wang XH, Dong XY, Zhou Y, Ni K, Cheng J, Chen ZM. Hot-wire anemometer based on silver-coated fiber Bragg grating assisted by no-core fiber. IEEE Photonics Technol Lett. 2013;25:2458.

    Article  CAS  Google Scholar 

  21. Chen RZ, Yan AD, Wang QQ, Chen KP. Fiber-optic Flow sensors for high-temperature environment operation up to 800 degrees C. Opt Lett. 2014;39:3966.

    Article  Google Scholar 

  22. Wang J, Liu ZY, Gao SR, Zhang AP, Shen YH, Tam HY. Fiber-optic anemometer based on bragg grating inscribed in metal-filled microstructured optical fiber. J Lightwave Technol. 2016;34:4884.

    Article  Google Scholar 

  23. Cheng JN, Chang HY, Fu MY, Liu WF. Fiber anemometer for simultaneously measuring wind speed and wind direction. Microw Opt Technol Lett. 2019;61:891.

    Article  Google Scholar 

  24. Liu GG, Han M, Hou WL. High-resolution and fast-response fiber-optic temperature sensor using silicon fabry-perot cavity. Opt Exp. 2015;23:7237.

    Article  CAS  Google Scholar 

  25. Li Y, Yan GF, Zhang L, He SL. Microfluidic flowmeter based on micro “hot-wire” sandwiched fabry-perot interferometer. Opt Exp. 2015;23:9483.

    Article  CAS  Google Scholar 

  26. Liu GG, Hou WL, Qiao W, Han M. Fast-response fiber-optic anemometer with temperature self-compensation. Opt Exp. 2015;23:13562.

    Article  CAS  Google Scholar 

  27. Zhang Y, Wang F, Liu ZG, Duan ZH, Cui WL, Han J, Gu YY, Wu ZL, Jing ZG, Sun CS, Peng W. Fiber-optic Anemometer based on single-walled carbon nanotube coated tilted fiber bragg grating. Opt Exp. 2017;25:24521.

    Article  CAS  Google Scholar 

  28. Liu YK, Liang BH, Zhang XJ, Hu N, Li KW, Chiavaioli F, Gui XC, Guo T. Plasmonic fiber-optic photothermal anemometers with carbon nanotube coatings. J Lightwave Technol. 2019;37:3373.

    Article  CAS  Google Scholar 

  29. Gao R, Lu DF, Cheng J, Qi ZM. Real-time fiber-optic anemometer based on a laser-heated few-layer graphene in an aligned graded-index fiber. Opt Lett. 2017;42:2703.

    Article  CAS  Google Scholar 

  30. Tong LM. Micro/nanofibre optical sensors: challenges and prospects. Sensors. 2018;18:903.

    Article  Google Scholar 

  31. Zhang L, Tang Y, Tong LM. Micro-/Nanofiber Optics: merging photonics and material science on nanoscale for advanced sensing technology. IScience. 2020;23:100810.

    Article  Google Scholar 

  32. Zhang L, Pan J, Zhang Z, Wu H, Yao N, Cai DW, Xu YX, Zhang J, Sun GF, Wang LQ, Geng WD, Jin WG, Fang WW, Di DW, Tong LM. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-electron Adv. 2020;3:190022.

    CAS  Google Scholar 

  33. Yu HK, Wang SS, Fu J, Qiu M, Li YH, Gu FX, Tong LM. Modeling bending losses of optical nanofibers or nanowires. Appl Opt. 2009;48:4365.

    Article  Google Scholar 

  34. Xu YX, Fang W, Tong LM. Real-time control of micro/nanofiber waist diameter with ultrahigh accuracy and precision. Opt Exp. 2017;25:10434.

    Article  CAS  Google Scholar 

  35. Tong LM, Lou JY, Gattass RR, He SL, Chen XW, Liu L, Mazur E. Assembly of silica nanowires on silica aerogels for microphotonic devices. Nano Lett. 2005;5:259.

    Article  CAS  Google Scholar 

  36. Douglas JF, Gasiorek JM, Swaffield JA, Jack LB. Fluid Mechanics. 5th ed. Pearson Education; 2006.

  37. Gere JM. Mechanics of materials. 6th ed. Brooks/Cole-Thomson learning; 2004.

  38. Pan J, Zhang Z, Jiang CP, Zhang L, Tong LM. Multifunctional skin-like wearable optical sensor based on optical micro/nanofibre. Nanoscale. 2020;12:17538.

    Article  CAS  Google Scholar 

  39. Jin L, Zheng Y, Liu ZK, Li JS, Zhai R, Chen ZD, Li Y. Design of an ultrasensitive flexible bend sensor using a silver-doped oriented poly(vinylidene fluoride) nanofiber web for respiratory monitoring. ACS Appl Mater Interfaces. 2020;12:1359.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (No. SQ2019YFC170311), the National Natural Science Foundation of China (No. 61975173), the Key Research and Development Project of Zhejiang Province (No. 2021C05003), and the Major Scientific Research Project of Zhejiang Lab (No. 2019MC0AD01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 766 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Kang, Y., Yao, N. et al. A Multifunctional Airflow Sensor Enabled by Optical Micro/nanofiber. Adv. Fiber Mater. 3, 359–367 (2021). https://doi.org/10.1007/s42765-021-00097-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00097-5

Keywords

Navigation