Skip to main content
Log in

Numerical analysis of heat transfer in magnetohydrodynamic micropolar jeffery fluid flow through porous medium over a stretching sheet with thermal radiation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study investigates the micropolar Jeffrey fluid flow in the presence of magnetic field across a stretching surface through porous medium. Through suitable similarity transformations, the governing partial differential equations are transformed into nonlinear ordinary differential equations and been solved numerically using MATLAB software (built-in solver called bvp4c boundary value problem fourth order collocation method) which establish the numerical solutions for such transformed nonlinear ordinary differential equations. The numerical solution for fluid velocity, micro-rotation and temperature thus obtained are explained graphically in which the influence of various pertinent parameters like magnetic parameter, porosity parameter, spin gradient viscosity parameter, unsteadiness parameter, Jeffrey fluid parameter, etc., on velocity, micro-rotation and temperature profiles has been studied and discussed. The plotted results are discussed for flow and heat transfer characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. Eringen AC. Theory of micropolar fluids. J Math Mech. 1966;16:1–18.

    Google Scholar 

  2. Vafai KA, Hadim HA. Hand Book of Porous Media. M. Decker New York. 2000.

  3. Hayat T, Mustafa M. Influence of thermal radiation on the unsteady mixed convection flow of a Jeffrey fluid over a stretching sheet. Zeitschrift für Naturforschung A. 2010;65(8–9):711–9.

    Article  CAS  Google Scholar 

  4. Hayat T, Shehzad SA, Qasim M, Obaidat S. Radiative flow of Jeffery fluid in a porous medium with power law heat flux and heat source. Nuclear Eng Design. 2012;243:15–9. https://doi.org/10.1016/j.nucengdes.2011.11.005.

    Article  CAS  Google Scholar 

  5. Nadeem S, Zaheer S, Fang T. Effects of thermal radiation on the boundary layer flow of a Jeffrey fluid over an exponentially stretching surface. Numer Algorithms. 2011;57(2):187–205.

    Article  Google Scholar 

  6. Turkyilmazoglu M, Pop I. Exact analytical solutions for the flow and heat transfer near the stagnation point on a stretching/shrinking sheet in a Jeffrey fluid. Int J Heat Mass Transf. 2013;57(1):82–8.

    Article  Google Scholar 

  7. Qasim M. Heat and mass transfer in a Jeffrey fluid over a stretching sheet with heat source/sink. Alex Eng J. 2013;52(4):571–5.

    Article  Google Scholar 

  8. Mukhopadhyay S. Effect of thermal radiation on unsteady mixed convection flow and heat transfer over a porous stretching surface in porous medium. Int J Heat Mass Trans. 2009;52(13–14):3261–5.

    Article  Google Scholar 

  9. Devi SPA, Kumari DV. Numerical investigation of slip flow effects on unsteady hydromagnetic flow over a stretching surface with thermal radiation. Int J Adv Appl Math and Mech. 2014;1(4):20–32.

    Google Scholar 

  10. Andersson HI, Aarseth JB, Dandapat BS. Heat transfer in a liquid film on an unsteady stretching surface. Int J Heat Mass Transf. 2000;43(1):69–74.

    Article  Google Scholar 

  11. Nazar R, Amin N, Pop I. Unsteady boundary layer flow due to a stretching surface in a rotating fluid. Mech Res Commun. 2004;31(1):121–8.

    Article  Google Scholar 

  12. Sarpkaya T. Flow of non-Newtonian fluids in a magnetic field. AIChE J. 1961;7(2):324–8.

    Article  CAS  Google Scholar 

  13. Andersson HI. MHD flow of a viscoelastic fluid past a stretching surface. Acta Mech. 1992;95(1):227–30.

    Article  Google Scholar 

  14. Liao S. On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet. J Fluid Mech. 2003;488:189–213. https://doi.org/10.1017/S0022112003004865.

    Article  Google Scholar 

  15. Sajid M, Hayat T, Asghar S. Non-similar analytic solution for MHD flow and heat transfer in a third-order fluid over a stretching sheet. Int J Heat Mass Transf. 2007;50(9–10):1723–36. https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.011.

    Article  Google Scholar 

  16. Ashokkunar K, Veena PH, Pravin VK. Closed form solutions of heat and mass transfer in the flow of a MHD visco-elastic fluid over a porous stretching sheet. Int J Appl Mech Eng. 2013;18(4):989–1002. https://doi.org/10.2478/ijame-2013-0061.

    Article  Google Scholar 

  17. Nallapu S, Radhakrishnamacharya G. Jeffrey fluid flow through porous medium in the presence of magnetic field in narrow tubes. Int J Eng Math. 2014;2014:1–8. https://doi.org/10.1155/2014/713831.

    Article  Google Scholar 

  18. Nallapu S, Radhakrishnamacharya G. Jeffrey fluid flow through a narrow tube in the presence of a magnetic field. Procedia Eng. 2015;127:185–92.

    Article  Google Scholar 

  19. Ahmad K, Ishak A. Magnetohydrodynamic (MHD) Jeffrey fluid over a stretching vertical surface in a porous medium. Propuls Power Res. 2017;6(4):269–76. https://doi.org/10.1016/j.jppr.2017.11.007.

    Article  Google Scholar 

  20. Andersson HI, Aarseth JB, Braud N, Dandapat BS. Flow of a power-law fluid film on an unsteady stretching surface. J Nonnewton Fluid Mech. 1996;62(1):1–8. https://doi.org/10.1016/0377-0257(95)01392-X.

    Article  CAS  Google Scholar 

  21. Ariel PD. MHD flow of a viscoelastic fluid past a stretching sheet with suction. Acta Mech. 1994;105(1):49–56. https://doi.org/10.1007/BF01183941.

    Article  Google Scholar 

  22. Kumari M M, Nath G. Analytical solution of unsteady three-dimensional MHD boundary layer flow and heat transfer due to impulsively stretched plane surface. Commun Nonlinear Sci Numer Simul. 2009;14(8):3339–50. https://doi.org/10.1016/j.cnsns.2008.11.011.

    Article  Google Scholar 

  23. El-Arabawy HAM. Exact solutions of mass transfer over a stretching surface with chemical reaction and suction/injection. J Math Stat. 2009;5(3):159–66. https://doi.org/10.3844/jmssp.2009.159.166.

    Article  Google Scholar 

  24. Hayat T, Asad S, Mustafa M, Alsaedi A. MHD stagnation-point flow of Jeffrey fluid over a convectively heated stretching sheet. Comput Fluids. 2015;108:179–85. https://doi.org/10.1016/j.compfluid.2014.11.016.

    Article  Google Scholar 

  25. Abbasi FM, Shehzad SA, Hayat T, Alsaedi A, Obid MA. Influence of heat and mass flux conditions in hydromagnetic flow of Jeffrey nanofluid. AIP Adv. 2015;5(3): 037111. https://doi.org/10.1063/1.4914549.

    Article  Google Scholar 

  26. Farooq M, Alsaedi A, Hayat T. Note on characteristics of homogeneous-heterogeneous reaction in flow of Jeffrey fluid. Appl Math Mech. 2015;36(10):1319–28. https://doi.org/10.1007/s10483-015-1981-9.

    Article  Google Scholar 

  27. Tripathi D, Ali N, Hayat T, Chaube MK, Hendi AA. Peristaltic flow of MHD Jeffrey fluid through finite length cylindrical tube. Appl Math Mech. 2011. https://doi.org/10.1007/s10483-011-1496-7.

    Article  Google Scholar 

  28. Kumar M. Study of differential transform technique for transient hydromagnetic Jeffrey fluid flow from a stretching sheet. Nonlinear Eng. 2020;9(1):145–55. https://doi.org/10.1515/nleng-2020-0004.

    Article  Google Scholar 

  29. Hayat T, Iqbal Z, Mustafa M, Alsaedi A. Unsteady flow and heat transfer of Jeffrey fluid over a stretching sheet. Therm Sci. 2014;18(4):1069–78. https://doi.org/10.2298/TSCI110907092H.

    Article  Google Scholar 

  30. Reiner M. The deborah number. Phys Today. 1964;17:62.

    Article  Google Scholar 

  31. Arqub OA, Shawagfeh N. Application reproducing kernel algorithm for solving Dirichlet time-fractional diffusion gordon types equations in porous media. J Pro Med. 2019;22(4):411–34. https://doi.org/10.1615/JProMedia.2019028970.

    Article  Google Scholar 

  32. Arqub OA. Numerical simulation time-fractional partial differential equations arising in fluid flows via reproducing Kernel method. Int J Numer Meth Heat Fluid Flow. 2020;30(11):4711–33. https://doi.org/10.1108/HFF-10-2017-0394.

    Article  Google Scholar 

  33. Arqub OA. Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm. Int J Numer Meth Heat Fluid Flow. 2018;28(4):828–56. https://doi.org/10.1108/HFF-07-2016-0278.

    Article  Google Scholar 

  34. Arqub OA, Al-Smadi M. An adaptive numerical approach for the solutions of fractional advection–diffusion and dispersion equations in singular case under Riesz’s derivative operator. Physica A: Statistical Mech Appl. 2020. https://doi.org/10.1016/j.physa.2019.123257.

    Article  Google Scholar 

  35. Arqub OA. Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm. Calcolo. 2018. https://doi.org/10.1007/s10092-018-0274.

    Article  Google Scholar 

  36. Nazari S, Ellahi R, Sarafraz MM, Safaei MR, Asgari A, Akbari OA. Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two lid-driven square cavity. J Therm Anal Calorim. 2020;140:1121–45. https://doi.org/10.1007/s10973-019-08841-1.

    Article  CAS  Google Scholar 

  37. Sarafraz MM, Christo FC. Thermal and flow characteristics of liquid flow in a 3D-printed micro-reactor: a numerical and experimental study. Appl Therm Eng. 2021. https://doi.org/10.1016/j.applthermaleng.2021.117531.

    Article  Google Scholar 

  38. Bagherzadeh SA, Jalali E, Akbari MMA, Karimipour A, Goodarzi M, Bach Q. Effects of magnetic field on micro cross jet injection of dispersed nanoparticles in a microchannel. Int J Numer Meth Heat Fluid Flow. 2020;30(5):2683–704. https://doi.org/10.1108/HFF-02-2019-0150.

    Article  Google Scholar 

  39. Goodarzi H, Akbari OA, Sarafraz MM, Karchegani MM, Safaei MR, Shabani GAS. Numerical simulation of natural convection heat transfer of nanofluid with Cu, MWCNT, and Al2O3 nanoparticles in a cavity with different aspect ratios. J Therm Sci Eng Appl. 2019. https://doi.org/10.1115/1.4043809.

    Article  Google Scholar 

  40. Yousefzadeh S, Rajabi H, Ghajari N, Sarafraz MM, Akbari OA, Goodarzi M. Numerical investigation of mixed convection heat transfer behavior of nanofluid in a cavity with different heat transfer areas. J Therm Anal Calorim. 2020;140:2779–803. https://doi.org/10.1007/s10973-019-09018-6.

    Article  CAS  Google Scholar 

  41. Ellahi R, Hussain F, Abbas SA, Sarafraz MM, Goodarzi M, Shadloo MS. Study of two-phase newtonian nanofluid flow hybrid with hafnium particles under the effects of slip. Inventions. 2020;5(1):6. https://doi.org/10.3390/inventions5010006.

    Article  Google Scholar 

  42. Arasteh H, Mashayekhi R, Goodarzi M, Motaharpour SH, Dahari M, Toghrai D. Heat and fluid flow analysis of metal foam embedded in a double-layered sinusoidal heat sink under local thermal non-equilibrium condition using nanofluid. J Therm Anal Calorim. 2019;138:1461–76. https://doi.org/10.1007/s10973-019-08168-x.

    Article  CAS  Google Scholar 

  43. Faraz N, Khan Y, Lu DC, Goodarzi M. Integral transform method to solve the problem of porous slider without velocity slip. Symmetry. 2019;11(6):791. https://doi.org/10.3390/sym11060791.

    Article  Google Scholar 

  44. Gholamalizadeh E, Pahlevanzadeh F, Ghani K, Karimipour A, Nguyen TK, Safaei MR. Simulation of water/FMWCNT nanofluid forced convection in a microchannel filled with porous material under slip velocity and temperature jump boundary conditions. Int J Numer Meth Heat Fluid Flow. 2020;30(5):2329–49. https://doi.org/10.1108/HFF-01-2019-0030.

    Article  Google Scholar 

  45. Hooman K, Tamayol A, Dahari M, Safaei MR, Togun H, Sadri R. A theoretical model to predict gas permeability for slip flow through a porous medium. Appl Therm Eng. 2014;70(1):71–6. https://doi.org/10.1016/j.applthermaleng.2014.04.071.

    Article  Google Scholar 

  46. Maleki H, Alsarraf J, Moghanizadeh A, Hajabdollahi H, Safaei MR. Heat transfer and nanofluid flow over a porous plate with radiation and slip boundary conditions. J Cent South Univ. 2019;26:1099–115. https://doi.org/10.1007/s11771-019-4074-y.

    Article  CAS  Google Scholar 

  47. Maleki H, Safaei MR, Alrashed AAA, Kasaeian A. Flow and heat transfer in non-Newtonian nanofluids over porous surfaces. J Therm Anal Calorim. 2019;135:1655–66. https://doi.org/10.1007/s10973-018-7277-9.

    Article  CAS  Google Scholar 

  48. Waqas H, Farooq U, Khan SA, Alshehri H, Goodarzi M. Numerical analysis of dual variable of conductivity in bioconvection flow of Carreau-Yasuda nanofluid containing gyrotactic motile microorganisms over a porous medium. J Therm Anal Calorim. 2021;145:2033–44. https://doi.org/10.1007/s10973-021-10859-3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kottakkaran Sooppy Nisar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, V., Singh, B. & Nisar, K.S. Numerical analysis of heat transfer in magnetohydrodynamic micropolar jeffery fluid flow through porous medium over a stretching sheet with thermal radiation. J Therm Anal Calorim 147, 9829–9851 (2022). https://doi.org/10.1007/s10973-022-11224-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11224-8

Keywords

Navigation