Skip to main content

Advertisement

Log in

Holistic Assessment of Calcium Fertilization in Potato: Diagnostic, Productivity, and Tuber Quality

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

Calcium (Ca) deficiency could negatively affect potato (Solanum tuberosum L.) tuber yield and quality. Therefore, it is required to develop Ca diagnostic methods and assess the impact of Ca fertilization on tuber yield and quality (dry matter and starch concentration, resistance to mechanical damage, and sensory texture attributes such as firmness, mealiness, granularity, and moisture). Field trials evaluating three Ca rates (0, 40, and 80 kg ha−1) were performed for six site-years. Soil exchangeable Ca (Cae) (0–20 cm) at planting and leaf Ca concentration (CaL) at tuber bulking were measured. At harvest, tuber yield, tuber quality parameters, and tuber Ca concentration (CaT) were determined. On average, across site-years, Ca fertilization increased tuber yield, CaT, and CaL by 16, 14, and 17%, respectively. Yield response to Ca increased 4.5 Mg ha−1 for each cmolc kg−1 reduction in soil Cae below 11.3 cmolc kg−1, while it increased 1.7 Mg ha−1 for each 0.1 g 100 g−1 reduction in CaL below 1.05 g 100 g−1. Calcium fertilization increased tuber dry matter (5%), starch (13%), and sensory texture attributes, mainly firmness (103%) and mealiness (70%). Also, these parameters were positively associated with CaT. The mechanical damage depth and mechanical damage index decreased with increments in Ca rate and CaT. Under Ca deficiencies, Ca fertilization is a recommended management practice for improving potato yield and quality while reducing tuber mechanical damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Ca:

Calcium

MDI:

Mechanical damage index

Cae :

Exchangeable Ca concentration

CaL :

Leaf Ca concentration

CaT :

Tuber Ca concentration

DM:

Dry matter

SOM:

Soil organic matter

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrig Drain Pap 56:1–15

    Google Scholar 

  • Anzaldúa-Morales A, Garza D, Perez-Varga CG, Pico L (1987) Resultados de pruebas de evaluación sensorial. Universidad autónoma de Chihuahua, Facultad de Ciencias Químicas, México (In Spanish)

    Google Scholar 

  • Bertoft E, Blennow A (2016) Structure of potato starch. In: Singh J, Kaur L (eds) Advances in potato chemistry and technology, Academic Press, pp 57–73. https://doi.org/10.1016/B978-0-12-800002-1.00003-0

  • Bourne M (2002) Food texture and viscosity: concept and measurement. Academic Press, An Elsevier Science Imprint, New York

    Book  Google Scholar 

  • Bray RH, Kurtz L (1945) Determination of total, organic and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  • Caldiz DO, Viani PG, Giletto CM, Zamuner EC, Echeverría HE (2018) Improving yield and quality of processing potato crops grown in the Argentinian Pampas: the role of N, P and S and their impact on CO2 emissions. Potato Res 61:147–168. https://doi.org/10.1007/s11540-018-9364-5

    Article  CAS  Google Scholar 

  • Capurro JA, Cuenca I, Exilart JP, Nolasco ME (2004) Daño mecánico en cuatro cultivares de papa (Solanum tuberosum) a tres temperaturas de conservación. RIA 33:41–53 (In Spanish)

    Google Scholar 

  • Chuang L, Panyoyai N, Katopo L, Shanks R, Kasapis S (2016) Calcium chloride effects on the glass transition of condensed systems of potato starch. Food Chem 199:791–798. https://doi.org/10.1016/j.foodchem.2015.12.076

    Article  CAS  PubMed  Google Scholar 

  • FAO (2018) The future of food and agriculture. Alternative pathways to 2050. Food and Agriculture Organization of the United Nations. Rome, Italy. Licence: CC BY-NC-SA 3.0 IGO. Available via DIALOG. https://www.fao.org/3/CA1553EN/ca1553

  • Giletto CM, Reussi Calvo NI, Sandaña P, Echeverría HE, Bélanger G (2020) Shoot- and tuber-based critical nitrogen dilution curves for the prediction of the N status in potato. Eur J Agron 119:126114. https://doi.org/10.1016/j.eja.2020.126114

    Article  CAS  Google Scholar 

  • Gondwe RL, Kinoshita R, Suminoe T, Aiuchi D, Palta J, Tani M (2019) Soil and tuber calcium affecting tuber quality of processing potato (Solanum tuberosum L.) cultivars grown in Hokkaido, Japan. Soil Sci Plant Nutr 65:159–165. https://doi.org/10.1080/00380768.2019.1579044

    Article  CAS  Google Scholar 

  • Gupta UC, Sanderson JB (1993) Effect of sulfur, calcium, and boron on tissue nutrient concentration and potato yield. J Plant Nutr 16:1013–1023. https://doi.org/10.1080/01904169309364590

    Article  CAS  Google Scholar 

  • Haby VA, Russelle MP, Skogley EO (1990) Testing soils for potassium, calcium, and magnesium. In: Westerman RL (ed) Soil testing and plant analysis. SSSA, Inc., Madison Third Edition, Wisconsin, USA, pp 181–227

    Google Scholar 

  • Hopkins BG, Stark JC, Kelling KA (2020) Nutrient management. In: Stark JC, Thornton M, Nolte P (eds). Potato production systems. Springer Nature Switzerland AG, Cham, Switzerland, pp 155–202

  • Ilyas M, Ayub G, Ali I, Awan A, Ahmad M (2021) Calcium and boron effect on production and quality of autumn potato crop under chilling temperature. Commun Soil Sci Plant 52:375–388. https://doi.org/10.1080/00103624.2020.1854286

    Article  CAS  Google Scholar 

  • Jones JB, Case VW (1990) Sampling, handling and analyzing plant tissues samples. In: Weterman RL (ed) Soil testing and plant analysis, volume 3, third edition, Soil Science Society of America, Inc., SSSA Book Series, pp 389–427. https://doi.org/10.2136/sssabookser3.3ed.c15

  • Karlsson BH, Palta JP, Crump PM (2006) Enhancing tuber calcium by in-season calcium application can reduce incidence of black spot bruise injury in potatoes. HortSci 41:1213–1221. https://doi.org/10.21273/HORTSCI.41.5.1213

    Article  CAS  Google Scholar 

  • Keeney DR (1982) Nitrogen-availability indexes, In: Page AL (ed.) Methods of soil analysis. pt 2. Chemical and microbiological properties. ASA, Madison, Wisconsin, pp 711–733

  • Kita A (2014) The effect of frying on fat uptake and texture of fried potato products. Eur J Lipid Sci Tech 116:735–740. https://doi.org/10.1002/ejlt.201300276

    Article  CAS  Google Scholar 

  • Koch M, Naumann M, Pawelzik E (2019) Cracking and fracture properties of potato (Solanum tuberosum L.) tubers and their relation to dry matter, starch, and mineral distribution. J Sci Food Agric 99:3149–3156. https://doi.org/10.1002/jsfa.9530

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Naumann M, Pawelzik E, Gransee A, Thiel H (2020) The importance of nutrient management for potato production. Part I: Plant nutrition and yield. Potato Res 63:97–119. https://doi.org/10.1007/s11540-019-09431-2

    Article  Google Scholar 

  • Lavado RS, Taboada MA (2009) The Argentinean Pampas: a key region with a negative nutrient balance and soil degradation needs better nutrient management and conservation programs to sustain its future viability as a world agroresource. J Soil Water Conserv 64:150–153. https://doi.org/10.2489/jswc.64.5.150A

    Article  Google Scholar 

  • Murayama D, Koaze H, Ikeda S, Palta JP, Kasuga J, Pelpolage SW, Yamauchi H, Tani H (2019) In-season calcium fertilizer application increases potato cell walls calcium and firmness of French fries. Am J Potato Res 96:472–486. https://doi.org/10.1007/s12230-019-09736-5

    Article  CAS  Google Scholar 

  • Murayama D, Tani M, Ikeda S, Palta JP, Pelpolage SW, Yamauchi H, Koaze H (2017) Effects of calcium concentration in potato tuber cells on the formation of cross-links between pectin molecules by Ca2+. Am J Potato Res 94:524–533. https://doi.org/10.1007/s12230-017-9589-x

    Article  CAS  Google Scholar 

  • Naumann M, Koch M, Thiel H, Gransee A, Pawelzik E (2020) The importance of nutrient management for potato production. Part II: Plant nutrition and tuber quality. Potato Res 63:121–137. https://doi.org/10.1007/s11540-019-09430-3

    Article  CAS  Google Scholar 

  • Oliveira RC, da Silva JRR, Lana RMQ, de Azevedo Pereira AI, Castoldi R, de Camargo R, Luz JMQ (2020) Fertilizer application levels in potato crops and the diagnosis and recommendation integrated system (DRIS). Agronomy 11:51. https://doi.org/10.3390/agronomy11010051

    Article  CAS  Google Scholar 

  • Palta JP (2010) Improving potato tuber quality and production by targeted calcium nutrition: the discovery of tuber roots leading to a new concept in potato nutrition. Potato Res 53:267–275. https://doi.org/10.1007/s11540-010-9163-0

    Article  CAS  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. Available via. http://www.R-project.org/. Accessed 26 May 2022

  • Raidl (2020). Potato nutrition. In: Stark JC, Thornton M, Nolte P (eds) Potato production systems. Springer Nature Switzerland AG, Cham, Switzerland, pp 595–605

  • Riechelman WH, Postma R, Specken JW, de Haan JJ (2021) Critical nutrient concentrations in arable crops; literature study on the usability of critical concentrations to diagnose nutrient deficiency and/or steer fertilizer application. Nutriënten Management Instituut NMI BV, Wageningen, Rapport 1792.N.20, pp 42. Available via DIALOG. https://library.wur.nl/WebQuery/wurpubs/582472

  • Sainz Rozas HR, Eyherabide M, Larrea G, Martínez Cuesta N, Angelini H, Reussi Calvo N, Wyngaard N (2019) Relevamiento y determinación de propiedades químicas en suelos de aptitud agrícola de la región pampeana. Simposio Fertilidad: Conocer más, crecer mejor. Santa Fe, Argenitna, pp 141–158. (In Spanish). Available via DIALOG. http://hdl.handle.net/20.500.12123/11824

  • SAS Institute (2002) The SAS system for Windows, version 9.1. SAS

  • Stark JC, Love SL, Knowles NR (2020). Tuber quality. In: Stark JC, Thornton M, Nolte P (eds.) Potato production systems. Springer Nature Switzerland AG, Cham, Switzerland, pp 479–498

  • USDA (1999) Mollisols. In: Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. Agriculture Handbook No. 436. 2nd. ed. USDA-NRCS, Washington, DC, pp 555–654

  • Van Dijk C, Beekhuizen JG, Gibcens T, Boeriu C, Fischer M, Stolle-Smits T (2002) Texture of cooked potatoes (Solanum tuberosum). 2. Changes in pectin composition during storage of potatoes. J Agric Food Chem 50:5089–5097. https://doi.org/10.1021/jf011510v

    Article  CAS  PubMed  Google Scholar 

  • Vázquez MS, Pagani A (2015) Calcio y Magnesio. In: Echeverría HE, García FO (eds) Fertilidad de suelos y fertilidad de cultivos, Editorial INTA, Buenos Aires, Argentina, pp 317–355. (In Spanish)

  • Walkley A, Black IA (1934) An examination of degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–37

    Article  CAS  Google Scholar 

  • Walworth JL, Muniz JE (1993) A compendium of tissue nutrient concentrations for field grown potatoes. Am Potato J 70:579–597. https://doi.org/10.1007/BF02850848

    Article  CAS  Google Scholar 

  • Westermann DT (1993) Fertility management. In: Rowe RC (ed) Potato health management. APS Press, Minneapolis, MN, pp 77–86

    Google Scholar 

  • Zamuner EC, LLoveras J, Echeverria H (2016) Comparison of phosphorus fertilization diagnostic methods of potato in Mollisols. Agron J 108:1237–1245. https://doi.org/10.2134/agronj2015.0467

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the FCA-UNMP projects AGR527/17 and AGR583/19 and FONCyT project PICT-2020-SerieA-01330.

Author information

Authors and Affiliations

Authors

Contributions

G.C.M.: investigation, formal analysis, writing—original draft, writing, reviewing and editing, resources, project administration. K.E.M.: formal analysis, writing. C.P.: formal analysis, writing—review and editing. C.W.: formal analysis, writing—review and editing. S.S.: investigation, formal analysis, writing—review and editing. R.S.: writing—review and editing. S.F.: writing—review and editing. R.C.N.: formal analysis, writing—original draft, writing, reviewing and editing. All authors provided critical feedback on the manuscript.

Corresponding authors

Correspondence to C. M. Giletto or N. I. Reussi Calvo.

Ethics declarations

Conflict of Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Calcium fertilization increased potato yield and dry matter and starch concentration in tuber.

• We established soil (11.3 cmolc kg−1) and leaf (1.05 g 100 g−1) calcium sufficiency thresholds.

• Calcium fertilization reduced tuber mechanical damage and improved sensory texture attributes.

• Tuber calcium concentration explained variations in tuber quality parameters.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giletto, C.M., Kloster Erreguerrena, M., Ceroli, P. et al. Holistic Assessment of Calcium Fertilization in Potato: Diagnostic, Productivity, and Tuber Quality. J Soil Sci Plant Nutr 23, 485–495 (2023). https://doi.org/10.1007/s42729-022-01060-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-022-01060-y

Keywords

Navigation