Skip to main content

Advertisement

Log in

Vegetative and Physiological Responses of “Emerald” Blueberry to Ammoniacal Sources with a Nitrification Inhibitor

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

The nitrogen nutrition in blueberry has been studied by some authors; however, the effect of N-nitrate or N-ammoniacal fertilizers with nitrification inhibitors on plant growth and physiology has not been known. The aim of this investigation was to study the effectiveness and physiological implications of ammoniacal fertilizers, with or without nitrification inhibitors in blueberry. An experiment was conducted on 1-year “Emerald” blueberries grown in 20-L plastic pots. Our data indicate that ammonium-containing fertilizers promote vegetative growth and increase the leaf nitrogen concentration and gas exchange in plants, possibly due to higher nitrogen root absorption compared with nitrate. On the other hand, fertilization with ammonium with a nitrification inhibitor increases the leaf chlorophyll concentration compared with the addition of ammonium without a nitrification inhibitor and nitrate. However, the ammonium supply decreases the concentration of calcium and potassium in leaves. Our data suggest, for the first time, that fertilization with ammonium accompanied by a nitrification inhibitor is an effective strategy to improve the nitrogen status and promote plant development in “Emerald” blueberry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alt D (2015) Physiological and molecular basis for low nitrate (NO3) assimilation in blueberry. M.Sc. thesis. University of Georgia, Graduate Faculty, Athens, Georgia, USA, 75 p

  • Alt DS, Doyle JW, Malladi A (2017) Nitrogen-source preference in blueberry (Vaccinium sp.): enhanced shoot nitrogen assimilation in response to direct supply of nitrate. J Plant Physiol 216:79–87

    CAS  PubMed  Google Scholar 

  • Barker AV, Bryson GM (2007) Nitrogen. In: Barker AV, Pilbeam DJ (eds) Handbook of plant nutrition. CRC Press, Miami, pp 21–51

    Google Scholar 

  • Bondada BR, Syvertsen JP (2003) Leaf chlorophyll, net gas exchange and chloroplast ultrastructure in citrus leaves of different nitrogen status. Tree Physiol 23:553–559

    CAS  PubMed  Google Scholar 

  • Bryla D, Strik B, Bañados MP, Righetti TL (2012) Response of highbush blueberry to nitrogen fertilizer during field establishment-II: plant nutrient requirements in relation to nitrogen fertilizer supply. HortScience 47(7):917–926

    CAS  Google Scholar 

  • Claussen W, Lenz F (1999) Effect of ammonium or nitrate nutrition on net photosynthesis, growth, and activity of the enzymes nitrate reductase and glutamine synthetase in blueberry, raspberry and strawberry. Plant Soil 208(1):95–102

    CAS  Google Scholar 

  • Coskun D, Britto DT, Shi W, Kronzucker HJ (2017) Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat Plants 3:17074

    CAS  PubMed  Google Scholar 

  • Covarrubias JI, Pisi A, Rombolà AD (2014) Evaluation of sustainable management techniques for preventing iron chlorosis in the grapevine. Austr J Grape Wine R 20:149–159

    CAS  Google Scholar 

  • Crisóstomo M, Hernández O, López J, Manjarrez-Domínguez D, Pinedo-Alvárez A (2014) Relaciones amonio/nitrato en soluciones nutritivas ácidas y alcalinas para arándano. Rev Mex Cienc Agríc 5(3):525–532

    Google Scholar 

  • Darnell R, Cruz-Huerta N (2011) Uptake and assimilation of nitrate and iron in cultivated and wild Vaccinium species. Int J Fruit Sci 11(2):136–150

    Google Scholar 

  • Darnell R, Casamali B, Williamson J (2015) Nutrient assimilation in southern highbush blueberry and implications for the field. Horttechnology 25(4):460–463

    CAS  Google Scholar 

  • Ehret DL, Frey B, Forge T, Helmer T, Bryla DR, Zebarth BJ (2014) Effects of nitrogen rate and application method on early production and fruit quality in highbush blueberry. Can J Plant Sci 94:1165–1179

    CAS  Google Scholar 

  • Fan P, Li L, Duan W, Li WD, Li SH (2010) Photosynthesis of young apple trees in response to low sink demand under different air temperatures. Tree Physiol 30:313–325

    CAS  PubMed  Google Scholar 

  • Granja F, Covarrubias J (2018) Evaluation of acidifying nitrogen fertilizers in avocado trees with iron deficiency symptoms. J Soil Sci Plant Nutr 18(1):157–172

    CAS  Google Scholar 

  • Hanson EJ (2006) Nitrogen fertilization of Highbush blueberry. Acta Hortic 715:347–351

    Google Scholar 

  • Hayatsu M, Tago K, Saito M (2008) Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci Plant Nutr 54:33–45

    CAS  Google Scholar 

  • Heil J, Vereeckena H, Brüggemann N (2016) A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil. Eur J Soil Sci 67:23–39

    CAS  Google Scholar 

  • Jing J, Ruia Y, Zhanga F, Rengel Z, Shena J (2010) Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification. Field Crop Res 119:355–364

    Google Scholar 

  • Jorquera-Fontena E, Alberdi M, Reyes-Díaz M, Franck N (2016) Rearrangement of leaf traits with changing source-sink relationship in blueberry (Vaccinium corymbosum L.) leaves. Photosynthetica 54(4):508–516

    Google Scholar 

  • Leghari S, Wahocho N, Laghari G, Laghari A, Bhabhan G, Talpur K, Bhutto T, Wahocho S, Lashari A (2016) Role of nitrogen for plant growth and development: a review. Adv Environ Biol 10(9):209–218

    Google Scholar 

  • Leitzke LN, Picolotto L, dos Santos PI, Vignolo GK, Schmitz JD, Vizzotto M, Antunes LEC (2015) Nitrogen fertilizer affects the chemical composition of the substrate, the foliar nutrient content, the vegetative growth, the production and fruit quality of blueberry. Científica 43:316–324

    Google Scholar 

  • Liu W, Wang H, Shi Y, Gao Y, Zhang Z, Duan H, Fang J, He F (2010) The effect of different N, P, K rates on photosynthesis rate and chlorophyll content of leaves of walnut saplings. Acta Hortic 861:283–288

    CAS  Google Scholar 

  • Lorén F (2013) Estudio de la fertirrigación nitrogenada con el inhibidor de la nitrificación 3,4 Dimetilpirazolfosfato (DMPP) en melocotonero ‘Miraflores’. Doctoral Thesis. Universidad de Zaragoza, Facultad de Ciencias Agrarias y del Medio Natural, Zaragoza, Spain 266 p

  • Loulakakis KA, Morot-Gaudry JF, Velanis CN, Skopelitis DS, Moschou PN, Hirel B, Roubelakis-Angelakis KA (2009) Advancements in nitrogen metabolism in grapevine. In: Roubelakis-Angelakis KA (ed) Grapevine molecular physiology & biotechnology, 2nd edn. Springer, Netherlands, pp 161–205

    Google Scholar 

  • Machado R, Bryla D, Vargas O (2014) Effects of salinity induced by ammonium sulfate fertilizer on root and shoot growth of highbush blueberry. Acta Hortic 1017:407–414

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Martínez F, Palencia P, Weiland CM, Alonso D, Oliveira JA (2015) Influence of nitrification inhibitor DMPP on yield, fruit quality and SPAD values of strawberry plants. Sci Hortic 185:233–239

    Google Scholar 

  • Martínez F, Palencia P, Alonso D, Oliveira JA (2017) Advances in the study of nitrification inhibitor DMPP in strawberry. Sci Hortic 226:191–200

    Google Scholar 

  • Martínez-Alcántara B, Quiñones A, Polo C, Primo-Millo E, Legaz F (2013) Use of nitrification inhibitor DMPP to improve nitrogen uptake efficiency in citrus trees. J Agric Sci 5(2):1–18

    Google Scholar 

  • Merhaut D, Darnell R (1996) Vegetative growth and nitrogen/carbon partitioning in blueberry as influenced by nitrogen fertilization. J Am Soc Hortic Sci 121(5):875–879

    Google Scholar 

  • Michel L, Peña Á, Pastenes C, Berríos P, Rombolà AD, Covarrubias JI (2019) Sustainable strategies for preventing iron deficiency improve yield and berry composition in blueberry (Vaccinium spp.). Front Plant Sci 10:255

    PubMed  PubMed Central  Google Scholar 

  • Miller BD, Hawkins B (2007) Ammonium and nitrate uptake, nitrogen productivity and biomass allocation in interior spruce families with contrasting growth rates and mineral nutrient preconditioning. Tree Physiol 27(1):901–909

    CAS  PubMed  Google Scholar 

  • Molina J, Covarrubias JI (2019) Influence of nitrogen on physiological responses to bicarbonate in a grapevine rootstock. J Soil Sci Plant Nutr 19(2):305–312

    CAS  Google Scholar 

  • Nebauer S, Renau-Morata B, Guardiola JL, Molina R (2011) Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in citrus. Tree Physiol 31:169–177

    CAS  PubMed  Google Scholar 

  • Nieves-Cordones M, Alemán F, Martínez V, Rubio F (2014) K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. J Plant Physiol 171(9):688–695

    CAS  PubMed  Google Scholar 

  • Poonnachit U, Darnell R (2004) Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in Vaccinium species. Ann Bot 93:399–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Retamales J, Hancock F (2012) Blueberries. CABI Publishing, Wallingford

    Google Scholar 

  • Roca LF, Romero J, Bohórquez JM, Alcántara E, Fernández-Escobar R, Trapero A (2018) Nitrogen status affects growth, chlorophyll content and infection by Fusicladium oleagineum in olive. Crop Prot 109:80–85

    CAS  Google Scholar 

  • Rosen C, Allan D, Luby J (1990) Nitrogen form and solution pH influence growth and nutrition of two Vaccinium clones. J Am Soc Hortic Sci 115(1):83–89

    CAS  Google Scholar 

  • Spiers JM (1978) Effects of pH levels and nitrogen source on elemental leaf content of ‘Tifblue’ rabbiteye blueberry. J Am Soc Hortic Sci 103:705–708

    CAS  Google Scholar 

  • Spiers JM (1979) Calcium and nitrogen of ‘Tifblue’ rabbiteye blueberry in sand culture. HortScience 14:523–525

    CAS  Google Scholar 

  • Spiers J (1995) Substrate temperatures influence root and shoot growth of southern highbush and rabbiteye blueberries. Hortscience 30(5):1029–1030

    Google Scholar 

  • Szczerba MW, Britto DT, Ali SA, Balkos KD, Kronzucker HJ (2008) NH4+-stimulated and-inhibited components of K+ transport in rice (Oryza sativa L.). J Exp Bot 59(12):3415–3423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamada T (2004) Effects of nitrogen sources on growth and leaf nutrient concentrations of ‘Tifblue’ rabbiteye blueberry under water culture. Small Fruits Rev 3(1):149–158

    Google Scholar 

  • Vargas OL, Bryla DR (2015) Growth and fruit production of highbush blueberry fertilized with ammonium sulphate and urea applied by fertigation or as granular fertilizer. HortScience 50(3):479–485

    CAS  Google Scholar 

  • Wellburn A (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    CAS  Google Scholar 

  • Yang H, Kan C, Hung T, Hsieh P, Wang S, Hsieh W, Hsieh M (2017) Identification of early ammonium nitrate-responsive genes in rice roots. Sci Rep 7:16885

    PubMed  PubMed Central  Google Scholar 

  • Zheng-Qin X, Tai-Qing H, Yu-Chun MA, Guang-Xi X, Zhao-Liang Z (2010) Nitrate and ammonium leaching in variable- and permanent-charge paddy soils. Pedosphere 20(2):209–216

    Google Scholar 

Download references

Funding

This study was funded by the Graduate School of the Facultad de Ciencias Agronómicas, Universidad de Chile; the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) of Chile (FONDEQUIP project “Aplicación de la analítica de minerals mediante un Sistema de espectrofotometría de emisión atómica (MP-AES) en estudios de rehabilitación ambiental y producción sostenible de alimentos funcionales” no. EQM140007); and the Regional Government of O’Higgins (project “Innovación y optimización del riego en arándanos” no. FIC 30474716-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ignacio Covarrubias.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osorio, R., Cáceres, C. & Covarrubias, J.I. Vegetative and Physiological Responses of “Emerald” Blueberry to Ammoniacal Sources with a Nitrification Inhibitor. J Soil Sci Plant Nutr 20, 507–515 (2020). https://doi.org/10.1007/s42729-019-00135-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-019-00135-7

Keywords

Navigation