Skip to main content
Log in

Seed Pre-treatment with Polyhydroxy Fullerene Nanoparticles Confer Salt Tolerance in Wheat Through Upregulation of H2O2 Neutralizing Enzymes and Phosphorus Uptake

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

Polyhydroxy fullerenes nanoparticles (PHF) are regarded as free radical sponges. Can they mitigate oxidative stress and induce tolerance in plants exposed to salinity? The influence of PHF seed pre-treatment on growth and biochemical attributes of NaCl-stressed wheat is studied. Wheat seeds (cv. Ujala) were pre-treated with control, hydro-priming, 10, 40, 80, and 120 nM PHF doses for 10 h and grown in sand-filled pots under control (0 mM NaCl) and salinity (150 mM NaCl) provided through nutrient solution. Salinity markedly decreased root and shoot growth attributes consistent with the reduction in the chlorophyll contents, whereas it increased the antioxidant activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) enzymes. Plants exposed to salinity exhibited increase in malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents which indicated oxidative stress. Further, salinity triggered rise in Na+ uptake while decreased in K+ and Ca2+ contents both in the root and shoot. By contrast, wheat seedlings grown from PHF-treated seeds exhibited recovery in root and shoot growth under salinity. This recovery was linked with lower levels of MDA and H2O2 contents and higher antioxidant activities of CAT, POD, and APX enzymes under salinity stress. The PHF-treated plants had higher chlorophyll, free amino acids, ascorbic acid, and soluble sugars. Moreover, PHF seed pre-treatment resulted in higher K+ and P contents in the root while higher P contents in the shoot. Above all, PHF application mitigated adverse effects of salinity and promoted early seedling growth and establishment in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro (In: L. Pac). Academic Press, Orlando

    Google Scholar 

  • Alemán F, Nieves-Cordones M, Martínez V, Rubio F (2009) Potassium/sodium steady-state homeostasis in Thellungiella halophila and Arabidopsis thaliana under long-term salinity conditions. Plant Sci 176:768–774

    Article  CAS  Google Scholar 

  • Andrievsky G, Klochkov V, Derevyanchenko L (2005) Is the C60 fullerene molecule toxic?! Fuller Nanotub Car N 13(4):363–376

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chlorlasts: polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assemi S, Tadjiki S, Donose BC, Nguyen AV, Miller JD (2010) Aggregation of fullerol C60(OH)24 nanoparticles as revealed using flow field-flow fractionation and atomic force microscopy. Langmuir 26(20):16063–16070

    Article  CAS  PubMed  Google Scholar 

  • Barragán V, Leidi EO, Andrés Z, Rubio L, De Luca A, Fernández JA, Cubero B, Pardo JM (2012) Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24:1127–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barton CJ (1948) Photometric analysis of phosphate rock. Anal Chem 20(11):1068–1073

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287

    Article  CAS  PubMed  Google Scholar 

  • Borišev M, Borišev I Župunski M, Arsenov D, Pajević S, Ćurčić Ž, Vasin J, Djordjevic A (2016) Drought impact is alleviated in sugar beets (Beta vulgaris L.) by foliar application of fullerenol nanoparticles. PLoS One 11(11):263 1-20

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

  • Bray HG, Thorpe WV (1954) Analysis of phenolic compounds of interest in metabolism. Methods Biochem Anal 1:27–52

    CAS  PubMed  Google Scholar 

  • Cavalcanti FR, Lima JPMS, Ferreira-Silva SL, Viegas RA, Silveira JAG (2007) Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. J Plant Physiol 164:591–600

    Article  CAS  PubMed  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Colmer TD, Munns R, Flowers TJ (2006) Improving salt tolerance of wheat and barley: future prospects. Aust J Exp Agric 45(11):425–1443

    Google Scholar 

  • Cuin TA, Bose J, Stefano G, Jha D, Tester M, Mancuso S, Shabala S (2011) Assessing the role of root plasma membrane and tonoplast Na+/H+ exchanger in salinity tolerance in wheat: in planta quantification methods. Plant Cell Environ 34:947–961

    Article  CAS  PubMed  Google Scholar 

  • Cuin TA, Tian Y, Betts SA, Chalmandrier R, Shabala S (2009) Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions. Funct Plant Biol 36:1110–1119

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–431

    Article  CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, Larroque C (2002) Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun 294(1):116–119

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Wang Y, Folta KM, Krishna V, Bai W, Indeglia P, Georgieva A, Nakamura H, Koopman B, Moudgil B (2011) Polyhydroxy fullerenes (fullerols or fullerenols): beneficial effects on growth and lifespan in diverse biological models. PLoS One 6(5):1–8

    Google Scholar 

  • Geilfus CM (2018) Chloride: from nutrient to toxicant. Plant Cell Physiol 59(5):877–886

    Article  CAS  PubMed  Google Scholar 

  • González-Pérez L, Páez-Watson T, Álvarez-Suarez JM, Obando-Rojas MC, Bonifaz-Arcos E, Viteri G, Rivas-Romero F, Tejera E, Rogers HJ, Cabrera JC (2018) Application of exogenous xyloglucan oligosaccharides affects molecular responses to salt stress in Arabidopsis thaliana seedlings. J Soil Sci Plant Nutr 18(4):1187–1205

    Google Scholar 

  • Hamilton PB, Van Slyke DD (1943) The gasometric determination of free amino acids in blood filtrates by the ninhydrin-carbon dioxide method. J Biol Chem 150(1):231–250

    CAS  Google Scholar 

  • Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19–31

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51:463–499

    Article  CAS  Google Scholar 

  • Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ 33:552–565

    Article  CAS  PubMed  Google Scholar 

  • Iqbal M, Ashraf M (2013) Gibberellic acid mediated induction of salt tolerance in wheat plants: growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ Exp Bot 86:76–85

    Article  CAS  Google Scholar 

  • Kirk JT, Allen RL (1965) Dependence of chloroplast pigment synthesis on protein synthesis: effect of actidione. Biochem Biophys Res Commun 21(6):523–530

    Article  CAS  PubMed  Google Scholar 

  • Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13(1):37

    Article  PubMed  PubMed Central  Google Scholar 

  • Läuchli A, James RA, Huang CX, McCully M, Munns R (2008) Cell-specific localization of Na+ in roots of durum wheat and possible control points for salt exclusion. Plant Cell Environ 31:1565–1574

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Xiong F, Fan Y, Li J, Wang H, Xing G, Yan F, Tai F, He R (2016) Facile and scalable fabrication engineering of fullerenol nanoparticles by improved alkaline-oxidation approach and its antioxidant potential in maize. J Nanopart Res 483(18):338

    Article  CAS  Google Scholar 

  • Marshner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, New York

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee SP, Choudhuri MA (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58(2):166–170

    Article  CAS  Google Scholar 

  • Munns R, James RA, Gilliham M, Flowers TJ, Colmer TD (2016) Tissue tolerance: an essential but elusive trait for salt-tolerant crops. Funct Plant Biol 43(498):1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880

    CAS  Google Scholar 

  • Nedjimi B (2017) Calcium application enhances plant salt tolerance: a review. In: Naeem M, Ansari A, Gill S (eds) Essential plant nutrients. Springer, Cham

    Google Scholar 

  • Panova GG, Ktitorova IN, Skobeleva OV, Sinjavina NG, Charykov NA, Semenov KN (2016) Impact of polyhydroxy fullerene (fullerol or fullerenol) on growth and biophysical characteristics of barley seedlings in favourable and stressful conditions. Plant Growth Regul 79(3):309–317

    Article  CAS  Google Scholar 

  • Pardo JM, Rubio F (2011) Na+ and K+ transporters in plant signaling. In: Transporters and pumps in plant signaling. Springer, Berlin Heidelberg, pp 65–98

    Chapter  Google Scholar 

  • Pękal A, Pyrzynska K (2014) Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal Methods 7(9):1776–1782

    Article  Google Scholar 

  • Percey WJ, Shabala L, Wu Q, Su N, Breadmore MC, Guijt RM, Bose J, Shabala S (2016) Potassium retention in leaf mesophyll as an element of salinity tissue tolerance in halophytes. Plant Physiol Biochem 109:346–354

    Article  CAS  PubMed  Google Scholar 

  • Raza SH, Athar HR, Ashraf M, Hameed A (2007) Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environ Exp Bot 60(3):368–376

    Article  CAS  Google Scholar 

  • Raza SH, Ahmad MB, Ashraf MA, Shafiq F (2014) Time-course changes in growth and biochemical indices of mung bean [Vigna radiata (L.) Wilczek] genotypes under salinity. Braz J Bot 37(4):429–439

    Article  Google Scholar 

  • Sachkova AS, Kovel ES, Vorobeva AA, Kudryasheva NS (2017) Antioxidant activity of fullerenols. Bioluminescent monitoring in vitro. Procedia Tech 27:230–231

    Article  Google Scholar 

  • Shabala S, Shabala S, Cuin TA, Pang J, Percey W, Chen Z, Conn S, Eing C, Wegner LH (2010) Xylem ionic relations and salinity tolerance in barley. Plant J 61:839–853

  • Shabala L, Zhang J, Pottosin I, Bose J, Zhu M, Fuglsang AT, Velarde-Buendia A, Massart A, Hill CB, Roessner U, Shabala S (2016) Cell-type-specific H+-ATPase activity in root tissues enables K+ retention and mediates acclimation of barley (Hordeum vulgare) to salinity stress. Plant Physiol 172(4):2445–2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabala S (2017) Signalling by potassium: another second messenger to add to the list? J Exp Bot 68(15):4003–4007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabala S, Cuin T (2007) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Article  CAS  Google Scholar 

  • Shafiq F, Raza SH, Bibi A, Khan I, Iqbal M (2018) Inluence of proline priming on antioxidative potential and ionic distribution and its relationship with salt tolerance of wheat. Cereal Res Commun 46(2):286–299

    Article  CAS  Google Scholar 

  • Sheldon AR, Dalal RC, Kirchhof G, Kopittke PM, Menzies NW (2017) The effect of salinity on plant-available water. Plant Soil 418(1-2):477–491

    Article  CAS  Google Scholar 

  • Shu S, Guo R, Sun J, Yuan Y (2012) Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine. Physiol Plant 146:285–296

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, fifth edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2010) Additive effects of Na+ and Cl ions on barley growth under salinity stress. J Exp Bot 62:2189–2203

    Article  CAS  Google Scholar 

  • Teakle NL, Tyerman SD (2010) Mechanisms of Cl transport contributing to salt tolerance. Plant Cell Environ 33:566–589

    Article  CAS  PubMed  Google Scholar 

  • Tedeschi A, Zong L, Huang CH, Vitale L, Volpe MG, Xue X (2017) Effect of salinity on growth parameters, soil water potential and ion composition in Cucumis melo cv. Huanghemi in north‐western China. J Agron Crop Sci 203(1): 41–55

  • Torbaghan ME, Lakzian A, Astaraei AR, Fotovat A, Besharati H (2017) Salt and alkali stresses reduction in wheat by plant growth promoting haloalkaliphilic bacteria. J Soil Sci Plant Nutr 17(4):1058–1087

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci 151(1):59–66

    Article  CAS  Google Scholar 

  • Wang C, Zhang H, Ruan L, Chen L, Li H, Chang XL, Zhang X, Yang ST (2016) Bioaccumulation of 13C-fullerenol nanomaterials in wheat. Environ Sci Nano 3(4):799–805

    Article  CAS  Google Scholar 

  • Wolf B (1982) A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Commun Soil Sci Plant Anal 13(12):1035–1059

    Article  CAS  Google Scholar 

  • Xiong JL, Li J, Wang HC, Zhang CL, Naeem MS (2018) Fullerol improves seed germination, biomass accumulation, photosynthesis and antioxidant system in Brassica napus L. under water stress. Plant Physiol Biochem 129:130–140

    Article  CAS  PubMed  Google Scholar 

  • Zhang WD, Wang P, Bao Z, Ma Q, Duan LJ, Bao AK, Zhang JL, Wang SM (2017) SOS1, HKT1; 5, and NHX1 synergistically modulate Na+ homeostasis in the halophytic grass Puccinellia tenuiflora. Front Plant Sci 8:576

  • Zhu J (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was partially funded by Higher Education Commission (HEC), Islamabad, Pakistan through Project grants no. 20-1522/R&D/09 and 20-1523/R&D/10 to Prof. Dr. Muhammad Iqbal.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to this manuscript.

Corresponding author

Correspondence to Fahad Shafiq.

Ethics declarations

Conflict of Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiq, F., Iqbal, M., Ali, M. et al. Seed Pre-treatment with Polyhydroxy Fullerene Nanoparticles Confer Salt Tolerance in Wheat Through Upregulation of H2O2 Neutralizing Enzymes and Phosphorus Uptake. J Soil Sci Plant Nutr 19, 734–742 (2019). https://doi.org/10.1007/s42729-019-00073-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-019-00073-4

Keywords

Navigation