Skip to main content
Log in

Effect of three oviposition feeding substrates on biology and life table parameters of Orius laevigatus

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

The western flower thrips (WFT), Frankliniella occidentalis (Pergande), is one of the most important thysanopteran pests belonging to the family Thripidae. This species is a cosmopolitan and serious insect pest of greenhouse and field crops worldwide. Orius laevigatus (Fiber) (Heteroptera: Anthocoridae) is an important zoophytophagous insect that attacks a wide variety of insect pests and is commercially available as a biological control agent of F. occidentalis. However, the biological control success by this predator strongly depends on the morphological characteristics and nutritional quality of the host plant. In the present study, the suitability of green bean, marigold, and strawberry as banker plants for O. laevigatus were evaluated in the laboratory condition (25 ± 1 °C, a relative humidity of 70 ± 5% with a 16-h day). The shortest and longest developmental time of whole nymphal periods of O. laevigatus was on the green bean (10.6 days) and marigold (13.2 days) plants, respectively. The highest fecundity of O. lavigatus was on the green bean (113.0 eggs) and the lowest on the marigold (38.4 eggs). The highest net reproductive rate (R0: 47.3 female/female), intrinsic rate of increase (rm: 0.10 female/female/day), finite rate of increase (λ: 1.16 female/female/day), and generation time (T: 24.1 days) were obtained on the green bean. Based on our results, the green bean can be a good candidate as a banker plant for O. laevigatus in integrated pest management programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akköprü EP, Atlihan R, Okut H, Chi H (2015) Demographic assessment of plant cultivar resistance to insect pests: a case study of the dusky-veined walnut aphid (Hemiptera: Callaphididae) on five walnut cultivars. J Econ Entomol 108:378–387

    PubMed  Google Scholar 

  • Armer CA, Wiedenmann RN, Bush DR (1998) Plant feeding site selection on soybean by the facultatively phytophagous predator Orius insidiosus. Entomol Exp Appl 86:109–118

    Google Scholar 

  • Ballal CR, Yamada K (2016) Antocorid predator. In: Omkar (ed) Ecofriendly pest management for food security. Elsevier, London, pp 329–366 727pp

    Google Scholar 

  • Banihashemi S, Hosseini MR, Golizadeh H, Sankaran S (2017) Critical success factors (CSFs) for integration of sustainability into construction project management practices in developing countries. Int J Proj Manag 35:1103–1119

    Google Scholar 

  • Ben-Mahmoud S, Smeda J, Chappell T, Stafford-Banks C, Kaplinsky C, Anderson T (2018) Acylsugar amount and fatty acid profile differentially suppress oviposition by western flower thrips, Frankliniella occidentalis, on tomato and interspecific hybrid flowers. PLoS One 13:e0201583

    PubMed  PubMed Central  Google Scholar 

  • Bonte M, De Clercq P (2011) Influence of predator density, diet and living substrate on developmental fitness of Orius laevigatus. J Appl Entomol 135:343–350

    Google Scholar 

  • Bonte J, Vangansbeke D, Maes S, Bonte M, Conlong D, De Clercq P (2012) Moisture source and diet affect development and reproduction of Orius thripoborus and Orius naivashae, two predatory anthocorids from southern Africa. J Insect Sci 12:1–16

    PubMed  PubMed Central  Google Scholar 

  • Borzoui H, Naseri B, Mohammadzadeh-Bidarani M (2016) Adaptation of Habrobracon hebetor (Hymenoptera: Braconidae) to rearing on Ephestia kuehniella (Lepidoptera: Pyralidae) and Helicoverpa armigera (Lepidoptera: Noctuidae). J Insect Sci 16:1–7

    Google Scholar 

  • Borzoui E, Nouri-Ganbalani G, Naseri B (2017) In vitro and in vivo effects of α-amylase inhibitor from Avena sativa seeds on life history and physiological characteristics of Sitotroga cerealella (Lepidoptera: Gelechiidae). J Insect Sci 17(108):1–7

    Google Scholar 

  • Borzoui E, Bandani AR, Goldansaz SH, Talaei-Hassanlouei R (2018) Dietary protein and carbohydrate levels affect performance and digestive physiology of Plodia interpunctella (Lepidoptera: Pyralidae). J Econ Entomol 111(2):942–949

    CAS  PubMed  Google Scholar 

  • Brownbridge M, Buitenhuis R, Murphy G, Waite M, Scott-Dupree C (2013) Banker plants, trap crops and other bioprotection developments in Canadian greenhouse floriculture. In: Proceedings of the 4th International Symposium on Biological Control of Arthropods. Pucón, Chile, 4-8 March. (eds. Mason, P. G., Gillespie, D. R. and Vincent, C.) Pucon, Chile

  • Bueno VHP (1999) Protected cultivation and research on biological control of pests in greenhouses in Brazil. IOBC WPRS Bull 22:21–24

    Google Scholar 

  • Calvo FJ, Bolckmans K, Belda JE (2009) Development of a biological control-based integrated pest management method for Bemisia tabaci for protected sweet pepper crops. Entomol Exp Appl 133:9–18

    CAS  Google Scholar 

  • Chi H (1988) Life table analysis incorporating both sexes and variable developmental rates among individuals. Environ Entomol 17:26–34

    Google Scholar 

  • Chi H (2015) TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. (http://140.120.197.173/Ecology/Download/TWOSEX-MSChart.zip). Accessed 25 June 2015

  • Chi H, Liu H (1985) Two new methods for the study of insect population ecology. Bull Inst Zool Acad Sin 24:225–240

    Google Scholar 

  • Chi H, Su HY (2006) Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ Entomol 35:10–21

    Google Scholar 

  • Coll M, Ridgway RL (1995) Functional and numerical responses of Orius insidiosus (Heteroptera: Anthocoridae) to its prey in different vegetable crops. Ann Entomol Soc Am 88:732–738

    Google Scholar 

  • Costa CA, Guiné RP, Costa DV, Correia HE, Nave A (2019) Pest control in organic farming. In: Organic Farming. Elsevier, pp 41–90

  • Cottrell TE, Yeargan KV (1998a) Effect of pollen on Coleomegilla maculata (Coleoptera: Coccinellidae) population density, predation, and cannibalism in sweet corn. Environ Entomol 27:1402–1410

    Google Scholar 

  • Cottrell TE, Yeargan KV (1998b) Influence of a native weed, Acalypha ostryaefolia (Euphor biaceae), on Coleomegilla maculata (Coleoptera: Coccinellidae) population density, predation, and cannibalism in sweet corn. Environ Entomol 27:1375–1385

    Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, New York, p 436

    Google Scholar 

  • Elimem M, Harbi A, Limem-Sellemi E, Ben Othmen S, Chermiti H (2018) Orius laevigatus (Insecta; Heteroptera) local strain, a promising agent in biological control of Frankliniella occidentalis (Insecta; Thysanoptra) in protected pepper crops in Tunisia. Euro-Mediterranean J Environ Integ 3:5

  • Farhadi R, Allahyari H, Chi H (2011) Life table and predation capacity of Hippodamia variegate (Col. Coccinellidae) feeding on Aphis fabae (Hem. Aphididae). Biol Control 59:83–89

    Google Scholar 

  • Gilbertson RL, Batuman O, Webster CG, Adkins S (2015) Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Ann Rev Virol 2:67–93

    CAS  Google Scholar 

  • Hamdan AJ, Abu-Awad I (2007) Effect of host plants on predator prey relationship between predatory bug, Orius laevigatus (fiber) [Hemiptera: Anthocoridae] and tobacco whitefly, Bemisia tabaci (Gennadius) [Homoptera: Aleyrodidae]. An-Najah Univ J Res 21:86–99

    Google Scholar 

  • Jalalizand A, Karimy A, Ashouri A, Hosseini M, Golparvar AR (2012) Effect of host plant morphological features on functional response of Orius albidipennis (Hemiptera: Anthocoridae) to Tetranychus urticae (Acari: Tetranychidae). Res Crop 13:378–384

    Google Scholar 

  • Kim DS, Lee JH (2002) Egg and larval survivorship of Carposina sasakii (Lepidoptera: Carposinidae) in apple and peach and their effects on adult population dynamics in orchards. Environ Entomol 31:686–692

    Google Scholar 

  • Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201

    CAS  PubMed  Google Scholar 

  • Lorenzo ME, Bao L, Mendez L, Grille G, Bonato O, Basso C (2019) Effect of two oviposition feeding substrates on Orius insidiosus and Orius tristicolor (Hemiptera: Anthocoridae). Fla Entomol 102:395–402

    CAS  Google Scholar 

  • Lundgren JG, Fergen JK, Riedell WE (2008) The influence of plant anatomy on oviposition and reproductive success of the omnivorous bug Orius insidiosus. Anim Behav 75:1495–1502

    Google Scholar 

  • Madadi H, Enkegaard A, Brodsgaard HF, Kharrazi-Pakdel A, Mohaghegh J, Ashouri A (2007) Host plant effects on the functional response of Neoseiulus cucumeris to onion thrips larvae. J Appl Entomol 131:728–733

    Google Scholar 

  • Maia AHN, Luiz AJB, Campanhola C (2000) Statistical inference on associated fertility life table parameters using jackknife technique: computational aspects. J Econ Entomol 93:511–518

    Google Scholar 

  • Majd-Marani S, Naseri B, Nouri-Ganbalani G, Borzoui E (2017) The effect of maize hybrid on biology and life table parameters of the Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae). J Econ Entomol 110:1916–1922

    CAS  PubMed  Google Scholar 

  • Moayeri HRS, Ashouri A, Brødsgaard HF, Enkegaard A (2006) Odour-mediated preference and prey preference of Macrolophus caliginosus between spider mites and green peach aphids. J Appl Entomol 130:504–508

    Google Scholar 

  • Mohammadzadeh M, Izadi H (2018) Different diets affecting biology, physiology and cold tolerance of Trogoderma granarium Everts (Coleoptera: Dermestidae). J Stored Prod Res 76:58–65

    Google Scholar 

  • Montero-Astúa M, Ullman DE, Whitfield AE (2016) Salivary gland morphology, tissue tropism and the progression of tospovirus infection in Frankliniella occidentalis. Virology 493:39–51

    PubMed  Google Scholar 

  • Mortazavi N, Aleosfoor M, Minaei K (2015) Comparison of seven methods for rearing western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae). Iran Agric Res 34:15–20

    Google Scholar 

  • Mouden S, Sarmiento KF, Klinkhamer PGL, Leiss KA (2017) Integrated pest management in western flower thrips: past, present and future. Pest Manag Sci 73:813–822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naseri B, Abedi Z, Abdolmaleki A, Jafary-Jahed M, Borzoui E, Mansouri SM (2017) Fumigant toxicity and sublethal effects of Artemisia khorassanica and Artemisia sieberi on Sitotroga cerealella (Lepidoptera: Gelechiidae). J Insect Sci 15(100):1–7

    Google Scholar 

  • Nemati-Kalkhoran M, Razmjou J, Borzoui E, Naseri B (2018) Comparison of life table parameters and digestive physiology of Rhyzopertha dominica (Coleoptera: Bostrichidae) fed on various barley cultivars. J Insect Sci 18(31):1–9

    Google Scholar 

  • Nouri-Ganbalani G, Borzoui E, Shahnavazi M, Nouri A (2018) Induction of resistance against Plutella xylostella (L.) (Lep.: Plutellidae) by jasmonic acid and mealy cabbage aphid feeding in Brassica napus L. Front Physiology 9:859

    Google Scholar 

  • Nouri-Ganbalani G, Naseri B, Majd-Marani S, Borzoui E (2020) Canola cultivars affect nutrition and cold hardiness of Plutella xylostella (L.) (Lepidoptera: Plutellidae). Int J Trop Insect Sci. https://doi.org/10.1007/s42690-020-00125-8

  • Ogada PA, Moualeu DP, Poehling HM (2016) Predictive models for tomato spotted wilt virus spread dynamics, considering Frankliniella occidentalis specific life processes as influenced by the virus. PLoS One 11:e0154533

    PubMed  PubMed Central  Google Scholar 

  • Pérez-Hedo M, Urbaneja A (2015) Prospects for predatory mirid bugs as biocontrol agents of aphids in sweet peppers. J Pest Sci 88:65–73

    Google Scholar 

  • Riudavets J (1995) Predators of Frankliniella occidentalis (Perg.) and Thrips tabaci Lind.: a review. Wageningen Agricultural University papers 43-87

  • Sanchez JA, Gillespie DR, McGregor RR (2004) Plant preference in relation to life history traits in the zoophytophagous predator Dicyphus hesperus. Entomol Exp Appl 112:7–19

    Google Scholar 

  • Sarkar SC, Wang E, Zhang Z, Wu S, Lei Z (2019) Laboratory and glasshouse evaluation of the green lacewing, Chrysopa pallens (Neuroptera: Chrysopidae) against the western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Appl Entomol Zool 54:115–121

    Google Scholar 

  • Shaltiel L, Coll M (2004) Reduction of pear psylla damage by the predatory bug Anthocoris nemoralis (Heteroptera: Anthocoridae): the importance of orchard colonization time and neighboring vegetation. Biocontrol Sci Tech 14:811–821

    Google Scholar 

  • Shipp JL, Wang K (2003) Evaluation of Amblyseius cucumeris (Acari: Phytoseiidae) and Orius insidiosus (Hemiptera: Anthocoridae) for control of Frankliniella occidentalis (Thysanoptera: Thripidae) on greenhouse tomatoes. Biol Control 28:271–281

    Google Scholar 

  • Silva IM, Martins GF, Melo CR, Santana AS, Faro RR, Blank AF, Alves PB, Picanço MC, Cristaldo PF, Araújo APA (2018) Alternative control of Aedes aegypti resistant to pyrethroids: lethal and sublethal effects of monoterpene bioinsecticides. Pest Manag Sci 74:1001–1012

    CAS  PubMed  Google Scholar 

  • Silveira LCP, Bueno VHP, Van Lenteren JC (2004) Orius insidiosus as biological control agent of thrips in greenhouse chrysanthemums in the tropics. Bull Insectol 57:103–109

    Google Scholar 

  • Tsai JH, Wang JJ (2001) Effects of host plants on biology and life table parameters of Aphid spiraecola (Homoptera: Aphididae). Environ Entomol 30:45–50

    Google Scholar 

  • Urbaneja A, Tapia G, Stansly P (2005) Influence of host plant and prey availability on developmental time and survivorship of Nesidiocoris tenuis (Het.: Miridae). Biocontrol Sci Tech 15:513–518

    Google Scholar 

  • White NDG, Leesch JG (1995) Chemical control, in integrated management of insects in stored products. Marcel Dekker, New York

    Google Scholar 

  • Zeng F, Cohen AC (2000) Demonstration of amylase from the zoophytophagous anthocorid Orius insidiosus. Arch Insect Biochem Physiol 44:136–139

    CAS  PubMed  Google Scholar 

  • Zhang NX, Messelink GJ, Alba JM, Schuurink RC, Kant MR, Janssen A (2018) Phytophagy of omnivorous predator Macrolophus pygmaeus affects performance of herbivores through induced plant defences. Oecologia 186:101–113

    PubMed  Google Scholar 

Download references

Acknowledgments

The work received financial support by the Vali-e-Asr University of Rafsanjan (Rafsanjan, Iran) which is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamran Mahdian.

Ethics declarations

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kordestani, M., Mahdian, K., Baniameri, V. et al. Effect of three oviposition feeding substrates on biology and life table parameters of Orius laevigatus. Int J Trop Insect Sci 41, 1523–1529 (2021). https://doi.org/10.1007/s42690-020-00351-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-020-00351-0

Keywords

Navigation