Skip to main content

Advertisement

Log in

Thermography applied in the diagnostic assessment of bone fractures

  • Review
  • Published:
Research on Biomedical Engineering Aims and scope Submit manuscript

Abstract

Infrared thermography has been used in many medical applications. Objective: The objective of this study was to investigate, through systematic review and meta-analysis, studies using medical thermography for the diagnosis fractures and clinical follow-up of bone healing. Methods: Articles were selected from SciELO, MEDLINE/PubMed, Lilacs, Google Scholar, and Science Direct databases, between the years 2000 to 2020, using the descriptors: medical image/clinical diagnosis/bone fracture/bone consolidation/thermographic analysis identified by the Health Sciences and Medical Subject Headings, in English, Portuguese, and Spanish. The results of the studies were combined through the fixed effects model using the Mantel–Haenszel method and random effects analysis using the DerSimonian–Laird method. The quality of the studies was evaluated using the QUADAS-2 scale and the level of evidence, by the GRADE system, regarding the effectiveness of infrared thermography in diagnosing bone fractures. Results: of 364 articles identified, 12 studies were selected for quantitative analysis. The meta-analysis showed a sensitivity of up to 97.5% and specificity of 98.8% in detecting bone injuries. Conclusions: The evaluation of bone fractures by infrared medical thermography has demonstrated high sensitivity, reliability, and efficacy as a complementary method for monitoring. Thus, it can minimize the use of ionizing radiation-based examinations such as X-rays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arthur DT, Khan MM, Barclay LC. Thermographic investigation of osseous stress pathology. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2011.

  • Blasco JM, Sanchis-Sánchez E, Martín JD, Sanchis E, Salvador-Palmer R, Cibrián R. A Matlab based interface for infrared thermographic diagnosis of pediatric musculoskeletal injuries. Infrared Phys Technol. 2016;76:500–3.

    Article  Google Scholar 

  • Brioschi M, Silva F, Matias J, Dias F, Vargas J. Infrared imaging for Emergency Medical Services (EMS): Using an IR camera to identify life-threatening emergencies. InfraMation. 2008. p. 1–13

  • Burns Z, Khasnabish S, Hurley AC, Lindros ME, Carroll DL, Kurian S, Alfieri L, Ryan V, Adelman J, Bogaisky M. Classification of injurious fall severity in hospitalized adults. The Journals of Gerontology: Series A. 2020;75(10):e138–44.

    Article  Google Scholar 

  • Claes L, Cunningham J. Monitoring the mechanical properties of healing bone. Clinical Orthopaedics and Related Research®. 2009;467(8):1964–71.

    Article  Google Scholar 

  • Corte ACR, Hernandez AJ. Application of medical infrared thermography to sports medicine. Revista Brasileira de Medicina do Esporte.2016.

  • Ćurković S, Antabak A, Halužan D, Luetić T, Prlić I, Šiško J. Medical thermography (digital infrared thermal imaging–DITI) in paediatric forearm fractures–A pilot study. Injury. 2015;46:S36–9.

    Article  Google Scholar 

  • da Silva PG, Maia LACR. Instrumentos de avaliação da memória em idosos portugueses: uma revisão sistemática memory assessment instruments in portuguese elderly: a systematic review instrumentos de evaluación de memoria en ancianos. Revista Psicologia e Educação on-Line. 2020;3(1):93–103.

    Google Scholar 

  • Dalinka MK, Lally JF, Gorel VK. Evaluation of thermography as a screening procedure in internal derangement of the knee. Invest Radiol. 1973;8(4):228–32.

    Article  Google Scholar 

  • de Resende HC, Gomes DDVS, Mota GMDS. Evaluation of the treatment of patients subjected to osteogenesis induced by tibia bone distraction. Revista Brasileira de Ortopedia. 2020;55(1):75–81. https://www.scielo.br/j/rbort/a/qLys3nybrmDJScZvmZQSbbx/abstract/?lang=en.

  • De Salis AF, Saatchi R, Dimitri P. Evaluation of high resolution thermal imaging to determine the effect of vertebral fractures on associated skin surface temperature in children with osteogenesis imperfecta. Med Biol Eng Compu. 2018;56(9):1633–43.

    Article  Google Scholar 

  • de Trotta J, Ulbricht L. Termografia no Diagnóstico Complementar de Doenças Músculo Esqueléticas [Thermography in Complementary Diagnostic of Musculoskeletal Diseases]. Pan American Journal of Medical Thermology. 2015;2(1):7–13.

    Article  Google Scholar 

  • Devereaux MD, Parr GR, Lachmann SM, Page-Thomas P, Hazleman BL. The diagnosis of stress fractures in athletes. JAMA. 1984;252(4):531–3.

    Article  Google Scholar 

  • Doebler P, Holling H. Meta-analysis of diagnostic accuracy with mada. R Packag. 2015;1:15.

    MATH  Google Scholar 

  • dos Santos Bunn P, Miranda MEK, Rodrigues AI, de Souza Sodré R, Neves EB, da Silva EB. Infrared thermography and musculoskeletal injuries: a systematic review with meta-analysis. Infrared Physics & Technology. 2020;109:103435.

    Article  Google Scholar 

  • Goodman PH, Heaslet MW, Pagliano JW, Rubin BD. Stress fracture diagnosis by computer-assisted thermography. Phys Sportsmed. 1985;13(4):114–32.

    Article  Google Scholar 

  • Green J, Williams S, Finlay D, Harper W. Distal forearm fractures in children: the role of radiographs during follow up. Injury. 1998;29(4):309–12.

    Article  Google Scholar 

  • Haluzan D, Davila S, Antabak A, Dobric I, Stipic J, Augustin G, Ehrenfreund T, Prlic I. Thermal changes during healing of distal radius fractures—Preliminary findings. Injury. 2015;46:S103–6.

    Article  Google Scholar 

  • Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA. Cochrane handbook for systematic reviews of interventions. John Wiley & Sons; 2019.

    Book  Google Scholar 

  • Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring Inconsistency in Meta-Analyses Bmj. 2003;327(7414):557–60.

    Google Scholar 

  • Hoogervorst P, Shearer D, Miclau T. The burden of high-energy musculoskeletal trauma in high-income countries. World J Surg. 2020;44(4):1033–8.

    Article  Google Scholar 

  • Hosie K, Wardrope J, Crosby A, Ferguson D. Liquid crystal thermography in the diagnosis of scaphoid fractures. Arch Emerg Med. 1987;4(2):117.

    Article  Google Scholar 

  • Leeflang MM, Deeks JJ, Gatsonis C, Bossuyt PM. Systematic reviews of diagnostic test accuracy. Ann Intern Med. 2008;149(12):889–97.

    Article  Google Scholar 

  • Lopes B, Ramos IC, Ribeiro G, Correa R, Valbon B, Luz A, Salomão M, Lyra JM, Junior RA. Biostatistics: fundamental concepts and practical applications. Revista Brasileira de Oftalmologia. 2014;73(1).

  • Maruyama M, Rhee C, Utsunomiya T, Zhang N, Ueno M, Yao Z, Goodman SB. Modulation of the inflammatory response and bone healing. Front Endocrinol. 2020;11:386.

    Article  Google Scholar 

  • Masya F, Prastiawan H, Mubaroq S. Application Design to Diagnosis of Bone Fracture (Traditional) using Forward Chaining Methods. Int Res J Comput Sci. 2016;3(09):23–30.

    Google Scholar 

  • Meurman K. Thermography of stress fractures in military personel. 1982.

  • Morasiewicz L, Dudek K, Orzechowski W, Kulej M, Stepniewski M. Use of thermography to monitor the bone regenerate during limb lengthening–preliminary communication. Ortop Traumatol Rehabil. 2008;10(3):279–85.

    Google Scholar 

  • Müller ME, Nazarian S, Koch P, Schatzker J. The comprehensive classification of fractures of long bones. Springer Sci Bus Media. 2012.

  • Newgard CD, Zive D, Holmes JF, Bulger EM, Staudenmayer K, Liao M, Rea T, Hsia RY, Wang NE, Fleischman R. A multisite assessment of the American College of Surgeons Committee on Trauma field triage decision scheme for identifying seriously injured children and adults. J Am Coll Surg. 2011;213(6):709–21.

    Article  Google Scholar 

  • Nunes AA, Martinez EZ, Ana LW, Pazin-Filho A, Coelho EB, de Mello LM. Testes diagnósticos contexto da avaliação de tecnologias em saúde: abordagens, métodos e interpretação. Medicina (ribeirão Preto). 2015;48(1):8–18.

    Article  Google Scholar 

  • Owen R, Ramlakhan S, Saatchi R, Burke D. Development of a high-resolution infrared thermographic imaging method as a diagnostic tool for acute undifferentiated limp in young children. Med Biol Eng Compu. 2018;56(6):1115–25.

    Article  Google Scholar 

  • Reed C, Saatchi R, Burke D, Ramlakhan S. Infrared thermal imaging as a screening tool for paediatric wrist fractures. Med Biol Eng Compu. 2020;58:1549–63.

    Article  Google Scholar 

  • Ring E, Ammer K. Infrared thermal imaging in medicine. Physiol Meas. 2012;33(3):R33.

    Article  Google Scholar 

  • Rodrigues ÉO, Conci A, Borchartt TB, Paiva A, Silva AC, MacHenry T. Comparing results of thermographic images based diagnosis for breast diseases. IWSSIP 2014 Proceedings. 2014.

  • Rosa BB, Asperti AM, Helito CP, Demange MK, Fernandes TL, Hernandez AJ. EPIDEMIOLOGIA DAS LESÕES ESPORTIVAS DOS ATLETAS AMADORES UNIVERSITÁRIOS DE UM ÚNICO CENTRO. Acta Ortopédica Brasileira. 2014;22(6):321–4.

    Article  Google Scholar 

  • Sanchis-Sánchez E, Vergara-Hernández C, Cibrián RM, Salvador R, Sanchis E, Codoñer-Franch P. Infrared thermal imaging in the diagnosis of musculoskeletal injuries: a systematic review and meta-analysis. Am J Roentgenol. 2014;203(4):875–82.

    Article  Google Scholar 

  • Schmidt-Bleek K, Schell H, Schulz N, Hoff P, Perka C, Buttgereit F, Volk H-D, Lienau J, Duda GN. Inflammatory phase of bone healing initiates the regenerative healing cascade. Cell Tissue Res. 2012;347(3):567–73.

    Article  Google Scholar 

  • Selvarasu N, Nachiappan A, Nandhitha N. Abnormality detection from medical thermographs in human using euclidean distance based color image segmentation. 2010 International Conference on Signal Acquisition and Processing. 2010.

  • Silva CT, Naveed N, Bokhari S, Baker KE, Staib LH, Ibrahim SM, Muchantef K, Goodman TR. Early assessment of the efficacy of digital infrared thermal imaging in pediatric extremity trauma. Emerg Radiol. 2012;19(3):203–9.

    Article  Google Scholar 

  • Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, Carpenter J, Rücker G, Harbord RM, Schmid CH. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. Bmj. 2011 p. 343.

  • Tavares I, d. S., Matos, C. J. O. d., Nunes, M. A. P., Sousa, A. C. S., LyraJúnior, D. P. d., & Oliveira, J. L. M. Visão Geral com Meta-Análise de Revisões Sistemáticas sobre o Valor Diagnóstico e Prognóstico da Angiotomografia de Coronárias na Emergência. International Journal of Cardiovascular Sciences. 2018;31(1):33–46.

    Google Scholar 

  • van Laarhoven JJ, Lansink KW, van Heijl M, Lichtveld RA, Leenen LP. Accuracy of the field triage protocol in selecting severely injured patients after high energy trauma. Injury. 2014;45(5):869–73.

    Article  Google Scholar 

  • Vardasca R, Magalhaes C, Silva P, Abreu P, Mendes J, Restivo MT. Biomedical musculoskeletal applications of infrared thermal imaging on arm and forearm: A systematic review. J Therm Biol. 2019;82:164–77.

    Article  Google Scholar 

  • Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne J, Bossuyt P. QUADAS-2: strumento per valutare la qualità degli studi di accuratezza diagnostica. Evidence. 2016;8:e1000131.

    Google Scholar 

  • Wong LCY, Chiu WK, Russ M, Liew S. Review of techniques for monitoring the healing fracture of bones for implementation in an internally fixated pelvis. Med Eng Phys. 2012;34(2):140–52.

    Article  Google Scholar 

  • Zhang X, Cheng G, Xing X, Liu J, Cheng Y, Ye T, Wang Q, Xiao X, Li Z, Deng H. Near-infrared light-triggered porous AuPd alloy nanoparticles to produce mild localized heat to accelerate bone regeneration. The Journal of Physical Chemistry Letters. 2019;10(15):4185–91.

    Article  Google Scholar 

Download references

Funding

This research was funded by Araucária Foundation and CNPq for scholarships and support for the Coordination for Improvement of Higher Education Personnel—Brazil (CAPES)—Financing Code 001 and Project LAETA—UIDB/50022/2020, UIDP/50022/2020.

Author information

Authors and Affiliations

Authors

Contributions

WADS was involved in conceptualization; JM contributed to the methodology; KRGO was involved in the formal analysis and validation; WADS and CJAM contributed to the investigation; DPC was involved in the data curation; WADS and MR contributed to the writing–original draft preparation; JM, JFS, GNNN, and PN were involved in writing—review and editing; PN contributed to the funding acquisition, supervision and project administration.

Corresponding author

Correspondence to W. A. D. Strasse.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strasse, W., Ranciaro, M., De Oliveira, K. et al. Thermography applied in the diagnostic assessment of bone fractures. Res. Biomed. Eng. 38, 733–745 (2022). https://doi.org/10.1007/s42600-022-00206-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42600-022-00206-2

Keywords

Navigation