Skip to main content
Log in

Modeling orthotropic elastic-inelastic response of growing tissues with application to stresses in arteries

  • Original Paper
  • Published:
Mechanics of Soft Materials Aims and scope Submit manuscript

Abstract

This paper generalizes previous work on physically based nonlinear orthotropic invariants for thermomechanical response of soft materials to include the inelastic process of homeostasis, which causes a biological tissue to approach its homeostatic state. This process of homeostasis can cause a homogeneous material (one with the same constitutive equations and material constants as each material point) to develop a nonuniform state. Within the context of biological tissues, this means that the tissue cannot be unloaded elastically to a zero-stress state. A simplified version of the theory is used to describe elastic response of an artery from its nonuniform homeostatic state using a Fung-type exponential orthotropic strain energy function with material constants determined for a human carotid artery. As discussed in Safadi and Rubin (Int. J. Eng. Sci. 118(40), 2017), the approach of assuming a homeostatic state at systolic pressure and limiting extrapolation of the constitutive response to the physiological pressure range reduces uncertainty in the stress distributions in the artery. The specific results here show that the circumferential stress in the physiological pressure range exhibits a strong sensitivity to residual stresses known to exist in the cut unloaded state. This approach suggests that detailed experimental data on the response of the artery in its physiological pressure range and more complete understanding of mechanobiological processes during homeostasis are essential for determining an accurate constitutive equation of an artery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Safadi, M.M., Rubin, M.B.: A new analysis of stresses in arteries based on an Eulerian formulation of growth in tissues. Int. J. Eng. Sci. 118, 40 (2017)

    Article  MathSciNet  Google Scholar 

  2. Humphrey, J., Rajagopal, K.: A constrained mixture model for growth and remodeling of soft tissues. Mathematical models and methods in applied sciences 12, 407 (2002)

    Article  MathSciNet  Google Scholar 

  3. Ateshian, G.A., Costa, K.D., Azeloglu, E.U., Morrison, B., Hung, C.T.: Continuum modeling of biological tissue growth by cell division, and alteration of intracellular osmolytes and extracellular fixed charge density. J. Biomech. Eng. 131(10), 2009 (2009)

    Article  Google Scholar 

  4. Ambrosi, D., Ateshian, G.A., Arruda, E.M., Cowin, S., Dumais, J., Goriely, A., Holzapfel, G.A., Humphrey, J.D., Kemkemer, R., Kuhl, E., et al.: Perspectives on biological growth and remodeling. J. Mech. Phys. Solids 59, 863 (2011)

    Article  MathSciNet  Google Scholar 

  5. Ateshian, G.A., Morrison, IIIB., Holmes, J.W., Hung, C.T.: Mechanics of cell growth. Mech. Res. Commun. 42, 118 (2012)

    Article  Google Scholar 

  6. Sciumè, G., Shelton, S., Gray, W.G., Miller, C.T., Hussain, F., Ferrari, M., Decuzzi, P., Schrefler, B.: A multiphase model for three-dimensional tumor growth. New J. Phys. 15, 015005 (2013)

    Article  Google Scholar 

  7. Green, A.E., Naghdi, P.M.: A dynamical theory of interacting continua. Int. J. Eng. Sci. 3, 231 (1965)

    Article  MathSciNet  Google Scholar 

  8. Green, A.E., Naghdi, P.M.: A theory of mixtures. Arch. Ration. Mech. Anal. 24, 243 (1967)

    Article  MathSciNet  Google Scholar 

  9. Ateshian, G., Humphrey, J.: Continuum mixture models of biological growth and remodeling: Past successes and future opportunities. Ann. Rev. Biomed. Eng. 14, 97 (2012)

    Article  Google Scholar 

  10. Hsu, F.H.: The influences of mechanical loads on the form of a growing elastic body. J. Biomech. 1, 303 (1968)

    Article  Google Scholar 

  11. Cowin, S., Hegedus, D.: Bone remodeling I: Theory of adaptive elasticity. J. Elast. 6, 313 (1976)

    Article  MathSciNet  Google Scholar 

  12. Skalak, R.: Growth as a finite displacement field. In: Proceedings of the IUTAM symposium on finite elasticity, pp 347–355 (1981)

  13. Skalak, R., Dasgupta, G., Moss, M., Otten, E., Dullemeijer, P., Vilmann, H.: Analytical description of growth. J. Theor. Biol. 94, 555 (1982)

    Article  MathSciNet  Google Scholar 

  14. Cowin, S.C.: Wolff’s law of trabecular architecture at remodeling equilibrium. J. Biomech. Eng. 108, 83 (1986)

    Article  Google Scholar 

  15. Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27, 455 (1994)

    Article  Google Scholar 

  16. Taber, L.A.: Biomechanics of growth, remodeling, and morphogenesis. Appl. Mech. Rev. 48, 487 (1995)

    Article  Google Scholar 

  17. Lubarda, V.A., Hoger, A.: On the mechanics of solids with a growing mass. Int. J. Solids Struct. 39, 4627 (2002)

    Article  Google Scholar 

  18. Volokh, K.: Stresses in growing soft tissues. Acta Biomater. 2(5), 493 (2006)

    Article  Google Scholar 

  19. Kuhl, E.: Growing matter: a review of growth in living systems. J. Mech. Behav. Biomed. Mater. 29, 529 (2014)

    Article  Google Scholar 

  20. Rajagopal, K., Srinivasa, A.: Mechanics of the inelastic behavior of materials—Part 1, Theoretical underpinnings. Int. J. Plast. 14, 945 (1998)

    Article  Google Scholar 

  21. Eckart, C.: The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity. Phys. Rev. 73(4), 373 (1948)

    Article  MathSciNet  Google Scholar 

  22. Leonov, A.I.: Nonequilibrium thermodynamics and rheology of viscoelastic polymer media. Rheologica acta 15(2), 85 (1976)

    Article  Google Scholar 

  23. Rubin, M.B.: Plasticity theory formulated in terms of physically based microstructural variables - Part I. Theory. Int J. Solids Struct. 31(19), 2615 (1994)

    Article  Google Scholar 

  24. Rubin, M.B., Safadi, M.M., Jabareen, M.: A unified theoretical structure for modeling interstitial growth and muscle activation in soft tissues. Int. J. Eng. Sci. 2015, 2015 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Rubin, M.B., Jabareen, M.: Physically based invariants for nonlinear elastic orthotropic solids. J. Elast. 90(1), 1 (2008)

    Article  MathSciNet  Google Scholar 

  26. Rubin, M.B., Jabareen, M.: Further developments of physically based invariants for nonlinear elastic orthotropic solids. J. Elast. 103(2), 289 (2011)

    Article  MathSciNet  Google Scholar 

  27. Rubin, M.B.: A new approach to modeling the thermomechanical, orthotropic, elastic-inelastic response of soft materials. Mech. Soft Mater. 1(1), 3 (2019)

    Article  Google Scholar 

  28. Chuong, C.J., Fung, Y.C.: Residual stress in arteries. In: Frontiers in biomechanics, pp 117–129. Springer (1986)

  29. Fung, Y.C.: What are the residual stresses doing in our blood vessels?. Ann. Biomed. Eng. 19 (3), 237 (1991)

    Article  Google Scholar 

  30. Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. Phys. Sci. solids 61(1-3), 1 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Holzapfel, G.A., Sommer, G., Auer, M., Regitnig, P., Ogden, R. W.: Layer-specific 3D residual deformations of human aortas with non-atherosclerotic intimal thickening. Ann. Biomed. Eng. 35(4), 530 (2007)

    Article  Google Scholar 

  32. Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of arteries. Proc. R. Soc. A Math. Phys. Eng. Sci. 466, 1551 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Humphrey, J., Eberth, J., Dye, W., Gleason, R.: Fundamental role of axial stress in compensatory adaptations by arteries. J. Biomech. 42, 1 (2009)

    Article  Google Scholar 

  34. Safadi, M.M.: An Eulerian theoretical structure for modeling growth, remodeling and morphogenesis of soft tissues. Ph.D. thesis, Technion-Israel Institute of Technology (2016)

  35. Emuna, N., Durban, D., Osovski, S.: Sensitivity of arterial hyperelastic models to uncertainties in stress-free measurements. J. Biomech. Eng. 140(10) (2018)

  36. Flory, P.J.: Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57, 829 (1961)

    Article  MathSciNet  Google Scholar 

  37. Zeinali-Davarani, S., Choi, J., Baek, S.: On parameter estimation for biaxial mechanical behavior of arteries. J. Biomech. 42(4), 524 (2009)

    Article  Google Scholar 

  38. Eddhahak-Ouni, A., Masson, I., Mohand-Kaci, F., Zidi, M.: Influence of random uncertainties of anisotropic fibrous model parameters on arterial pressure estimation. Appl. Math. Mech. 34(5), 529 (2013)

    Article  MathSciNet  Google Scholar 

  39. Heusinkveld, M.H., Quicken, S., Holtackers, R.J., Huberts, W., Reesink, K.D., Delhaas, T., Spronck, B.: Uncertainty quantification and sensitivity analysis of an arterial wall mechanics model for evaluation of vascular drug therapies. Biomech. Model. Mechanobiol. 17(1), 55 (2018)

    Article  Google Scholar 

  40. von Hoegen, M., Marino, M., Schröder, J., Wriggers, P.: Direct and inverse identification of constitutive parameters from the structure of soft tissues. Part 2: dispersed arrangement of collagen fibers. Biomech. Model. Mechanobiol. 18, 897 (2019)

    Article  Google Scholar 

  41. Keyes, J.T., Lockwood, D.R., Utzinger, U., Montilla, L.G., Witte, R.S., Geest, J.P.V.: Comparisons of planar and tubular biaxial tensile testing protocols of the same porcine coronary arteries. Ann. Biomed. Eng. 41, 1579 (2013)

    Article  Google Scholar 

  42. Kamenskiy, A.V., Dzenis, Y.A., Kazmi, S.A.J., Pemberton, M.A., Pipinos, I.I., Phillips, N.Y., Herber, K., Woodford, T., Bowen, R.E., Lomneth, C.S., et al.: Biaxial mechanical properties of the human thoracic and abdominal aorta, common carotid, subclavian, renal and common iliac arteries. Biomech. Model. Mechanobiol. 13(6), 1341 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge helpful discussions with MM Safadi and N Emuna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.B. Rubin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Details of some the mathematical expressions

Appendix A: Details of some the mathematical expressions

1.1 A.1 Details of the functions N i and A i

The scalar functions Ni and Ai in Eq. 26 are defined by

$$ \begin{aligned} &\quad \quad \quad N_{1} =\frac{J_{e}}{\eta_{1}} \left( \frac{m_{11}^{\prime}}{{\eta_{1}^{2}}} - {\eta_{1}^{2}} m^{11 \prime}\right) \frac{\partial \eta_{1}}{\partial J_{e}} , \\ &\quad \quad \quad N_{2} =\frac{J_{e}}{\eta_{2}} \left( \frac{m_{22}^{\prime}}{{\eta_{2}^{2}}} - {\eta_{2}^{2}} m^{22 \prime}\right) \frac{\partial \eta_{2}}{\partial J_{e}} , \\ &\quad \quad \quad N_{3} =\frac{J_{e}}{\eta_{3}} \left( \frac{m_{33}^{\prime}}{{\eta_{3}^{2}}} - {\eta_{3}^{2}} m^{33 \prime}\right) \frac{\partial \eta_{3}}{\partial J_{e}} , \\ &\quad \quad \quad A_{1} =- \frac{1}{\eta_{1}} \left( \frac{m_{11}^{\prime}}{{\eta_{1}^{2}}} - {\eta_{1}^{2}} m^{11 \prime} \right) \frac{\partial \eta_{1}}{\partial \theta} , \\ &\quad \quad \quad A_{2} =- \frac{1}{\eta_{2}} \left( \frac{m_{22}^{\prime}}{{\eta_{2}^{2}}} - {\eta_{2}^{2}} m^{22 \prime} \right) \frac{\partial \eta_{2}}{\partial \theta} , \\ &\quad \quad \quad A_{3} =- \frac{1}{\eta_{3}} \left( \frac{m_{33}^{\prime}}{{\eta_{3}^{2}}} - {\eta_{3}^{2}} m^{33 \prime} \right) \frac{\partial \eta_{3}}{\partial \theta} . \end{aligned} $$
(101)

1.2 A.2 Details of the tensors \(\mathbf {B}_{i}^{\prime \prime }\)

The deviatoric tensors \(\mathbf {B}_{i}^{\prime \prime }\) in Eq. 26 are defined by

$$ \begin{aligned} &\mathbf{B}_{1}^{\prime\prime} = \frac{1}{{\eta_{1}^{2}}} \mathbf{m}_{1}^{\prime} \otimes \mathbf{m}_{1}^{\prime} - {\eta_{1}^{2}} \mathbf{m}^{1 \prime} \otimes \mathbf{m}^{1 \prime} \\ &\quad \quad - \frac{1}{3} \left( \frac{m_{11}^{\prime}}{{\eta_{1}^{2}}} - {\eta_{1}^{2}} m^{11 \prime} \right) \mathbf{I} , \\ &\mathbf{B}_{2}^{\prime\prime} = \frac{1}{{\eta_{2}^{2}}} \mathbf{m}_{2}^{\prime} \otimes \mathbf{m}_{2}^{\prime} - {\eta_{2}^{2}} \mathbf{m}^{2 \prime} \otimes \mathbf{m}^{2 \prime} \\ &\quad \quad- \frac{1}{3} \left( \frac{m_{22}^{\prime}}{{\eta_{2}^{2}}} - {\eta_{2}^{2}} m^{22 \prime} \right) \mathbf{I} , \\ &\mathbf{B}_{3}^{\prime\prime} = \frac{1}{{\eta_{3}^{2}}} \mathbf{m}_{3}^{\prime} \otimes \mathbf{m}_{3}^{\prime} - {\eta_{3}^{2}} \mathbf{m}^{3 \prime} \otimes \mathbf{m}^{3 \prime} \\ &\quad \quad- \frac{1}{3} \left( \frac{m_{33}^{\prime}}{{\eta_{3}^{2}}} - {\eta_{3}^{2}} m^{33 \prime} \right) \mathbf{I} , \\ &\mathbf{B}_{4}^{\prime\prime} = \frac{m_{12}^{\prime}}{m_{11}^{\prime} m_{22}^{\prime}} \left[(\mathbf{m}_{1}^{\prime} \otimes \mathbf{m}_{2}^{\prime}+ \mathbf{m}_{2}^{\prime} \otimes \mathbf{m}_{1}^{\prime})\right. \\ &\left.\quad \quad- \frac{m_{12}^{\prime}}{m_{11}^{\prime}} (\mathbf{m}_{1}^{\prime} \otimes \mathbf{m}_{1}^{\prime}) - \frac{m_{12}^{\prime}}{m_{22}^{\prime}} (\mathbf{m}_{2}^{\prime} \otimes \mathbf{m}_{2}^{\prime}) \right] , \\ &\mathbf{B}_{5}^{\prime\prime} = \frac{m_{13}^{\prime}}{m_{11}^{\prime} m_{33}^{\prime}} \left[(\mathbf{m}_{1}^{\prime} \otimes \mathbf{m}_{3}^{\prime}+ \mathbf{m}_{3}^{\prime} \otimes \mathbf{m}_{1}^{\prime})\right. \\ &\left.\quad \quad- \frac{m_{13}^{\prime}}{m_{11}^{\prime}} (\mathbf{m}_{1}^{\prime} \otimes \mathbf{m}_{1}^{\prime}) - \frac{m_{13}^{\prime}}{m_{33}^{\prime}} (\mathbf{m}_{3}^{\prime} \otimes \mathbf{m}_{3}^{\prime}) \right] , \\ &\mathbf{B}_{6}^{\prime\prime} = \frac{m_{23}^{\prime}}{m_{22}^{\prime} m_{33}^{\prime}} \left[(\mathbf{m}_{2}^{\prime} \otimes \mathbf{m}_{3}^{\prime}+ \mathbf{m}_{3}^{\prime} \otimes \mathbf{m}_{2}^{\prime})\right. \\ &\left.\quad \quad- \frac{m_{23}^{\prime}}{m_{22}^{\prime}} (\mathbf{m}_{2}^{\prime} \otimes \mathbf{m}_{2}^{\prime}) - \frac{m_{23}^{\prime}}{m_{33}^{\prime}} (\mathbf{m}_{3}^{\prime} \otimes \mathbf{m}_{3}^{\prime}) \right] . \end{aligned} $$
(102)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubin, M. Modeling orthotropic elastic-inelastic response of growing tissues with application to stresses in arteries. Mech Soft Mater 3, 5 (2021). https://doi.org/10.1007/s42558-021-00035-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42558-021-00035-w

Keywords

Navigation