Skip to main content
Log in

Some unexpected predictions from strongly anisotropic hyperelastic constitutive models of soft tissue

  • Original Paper
  • Published:
Mechanics of Soft Materials Aims and scope Submit manuscript

Abstract

It is shown that a widely used class of constitutive models for the mechanical response of elastic arteries, which includes the so-called HGO model, responds as if it were inextensible in simple tension in the zero limit of a non-dimensional ratio of material parameters. A significant auxetic response is predicted for an incompressible hyperelastic elastic sheet reinforced with inextensible cords. Thus, a significant lateral deformation of arterial specimens modelled by this class of materials should be observed in simple tension for small values of the non-dimensional parameter. However, such a response has not been observed experimentally. The analysis therefore suggests that predictions for this class of strongly anisotropic constitutive models for arteries should be treated with caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fung, Y.C.: Biomechanics: mechanical properties of living tissues. Springer Science and Business Media (2013)

  2. Holzapfel, G.A.: Collagen in arterial walls: biomechanical aspects. In: Fratz, P. (ed.) Collagen, pp 285–324. Springer, Boston (2008)

  3. Roach, M. R., Burton, A. C.: The reason for the shape of the distensibility curves of arteries. Canadian J. Biochemistry and Physiology 35, 681–690 (1957)

    Article  Google Scholar 

  4. Humphrey, J. D.: Cardiovascular Solid Mechanics. Cells Tissues and Organs. Springer, New York (2002)

    Book  Google Scholar 

  5. Humphrey, J. D.: Continuum biomechanics of soft biological tissues. Proc. Roy. Soc. A. 459, 3–46 (2003)

    Article  MathSciNet  Google Scholar 

  6. Taber, L. A.: Nonlinear Theory of Elasticity: Applications in Biomechanics. World Scientific, Singapore (2004)

    Book  Google Scholar 

  7. Ogden, R.W.: Nonlinear continuum mechanics and modeling the elasticity of soft biological tissues with a focus on artery walls. In: Holzapfel, G.A., Ogden, R.W. (eds.) Biomechanics: Trends in Modeling and Simulation, pp 83–156. Springer, Heidelberg (2017)

  8. Holzapfel, G. A., Gasser, T. C., Ogden, R. W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48 (2000)

    Article  MathSciNet  Google Scholar 

  9. Holzapfel, G. A.: Determination of material models for arterial walls from uniaxial extension tests and histological structure. J. Theor. Biol. 238, 290–302 (2006)

    Article  MathSciNet  Google Scholar 

  10. Adkins, J. E., Rivlin, R. S.: Large elastic deformations of isotropic materials X. Reinforcement by inextensible cords. Phil. Trans. Royal Soc. Lond. A 248, 201–223 (1955)

    Article  MathSciNet  Google Scholar 

  11. Ciambella, J., Saccomandi, G.: A continuum hyperelastic model for auxetic materials. Proc. Roy. Soc. A 470, 20130691 (2014)

    Article  MathSciNet  Google Scholar 

  12. Ciambella, J., Bezazi, A., Saccomandi, G., Scarpa, F.: Nonlinear elasticity of auxetic open cell foams modeled as continuum solids. J. Appl. Phys. 117, 184902 (2015)

    Article  Google Scholar 

  13. Crespo, J., Montáns, F. J.: A continuum approach for the large strain finite element analysis of auxetic materials. Int. J. Mech. Sci. 135, 441–457 (2018)

    Article  Google Scholar 

  14. Evans, K. E., Alderson, A.: Auxetic materials: functional materials and structures from lateral thinking!. Advanced Mat. 12, 617–628 (2000)

    Article  Google Scholar 

  15. Gatt, R., Wood, M. V., Gatt, A., Zarb, F., Formosa, C., Azzopardi, K. M., Casha, A., Agius, T. P., Schembri-Wismayer, P., Attard, L., Chockalingam, N., Grima, J. N.: Negative Poisson’s ratios in tendons: an unexpected mechanical response. Acta Biomater. 24, 201–208 (2015)

    Article  Google Scholar 

  16. Murphy, J.G., Biwa, S.: The counterintuitive mechanical response in simple tension of arterial models that are separable functions of the I1,I4,I6 invariants. Int. J. Nonlinear Mech. 90, 72–81 (2017)

    Article  Google Scholar 

  17. Horgan, C. O., Murphy, J. G.: The counterintuitive out-of-plane strength of incompressible orthotropic hyperelastic materials. Int. J. Solids Struct. 115, 170–179 (2017)

    Article  Google Scholar 

  18. Volokh, K. Y.: On arterial fiber dispersion and auxetic effect. J. Biomech. 61, 123–130 (2017)

    Article  Google Scholar 

  19. Holzapfel, G. A., Ogden, R. W.: On planar biaxial tests for anisotropic nonlinearly elastic solids. A continuum mechanical framework. Math. Mech. Solids 14, 474–489 (2009)

    Article  Google Scholar 

  20. Latorre, M., Romero, X., Montans, F. J.: The relevance of transverse deformation effects in modeling soft biological tissues. Int. J. Solids Struct. 99, 57–70 (2016)

    Article  Google Scholar 

  21. Skacel, P., Bursa, J.: Poisson’s ratio of arterial wall–inconsistency of constitutive models with experimental data. J. Mech. Behavior Biomed. Mat. 54, 316–327 (2016)

    Article  Google Scholar 

  22. Spencer, A. J. M.: Constitutive theory for strongly anisotropic solids. In: Continuum Theory of the Mechanics of Fibre-reinforced Composites, Spencer, A.J.M.(Ed). CISM Courses and Lectures No. 282. Springer, Vienna (1984)

  23. Itskov, M., Aksel, N.: Elastic constants and their admissible values for incompressible and slightly compressible anisotropic materials. Acta Mech. 157, 81–96 (2002)

    Article  Google Scholar 

  24. Holzapfel, G. A., Ogden, R. W.: Constitutive modelling of arteries. Proc. Roy. Soc. A 466, 1551–1597 (2010)

    Article  MathSciNet  Google Scholar 

  25. Holzapfel, G. A., Stadler, M., Schulze-Bauer, C. A.: A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Annals Biomed. Eng. 30, 753–767 (2002)

    Article  Google Scholar 

  26. Horgan, C. O., Murphy, J. G.: Some unexpected behaviour in shear for elasticity models of arterial tissue that only use the I 1, I 4, I 6 invariants. IMA J. Appl. Math. 79, 820–829 (2014)

    Article  MathSciNet  Google Scholar 

  27. Murphy, J. G.: Transversely isotropic biological, soft tissue must be modelled using both anisotropic invariants. Eur. J. Mech.-A/Solids 42, 90–96 (2013)

    Article  MathSciNet  Google Scholar 

  28. Destrade, M., Mac Donald, B., Murphy, J. G., Saccomandi, G.: At least three invariants are necessary to model the mechanical response of incompressible, transversely isotropic materials. Computational Mech. 52, 959–969 (2013)

    Article  MathSciNet  Google Scholar 

  29. Pucci, E., Saccomandi, G.: On the use of universal relations in the modeling of transversely isotropic materials. Int. J. Solids Struct. 51, 377–380 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the reviewers for their constructive comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Murphy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horgan, C.O., Murphy, J.G. Some unexpected predictions from strongly anisotropic hyperelastic constitutive models of soft tissue. Mech Soft Mater 2, 9 (2020). https://doi.org/10.1007/s42558-020-00024-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42558-020-00024-5

Keywords

Navigation