Skip to main content

Advertisement

Log in

Effect of tree species and seasons on soil nitrogen transformation rates in the semi-arid forest of Delhi, India

  • Research Articles
  • Published:
Vegetos Aims and scope Submit manuscript

Abstract

Soil nitrogen mineralization (N min) is a very crucial component of N cycling. By far, studies have primarily shown the effect of seasons on N min. However, information on the effect of trees is primarily missing in the semi-arid forest of Delhi. We ascertained the effect of tree species and seasons on nitrogen mineralization, nitrification, and ammonification for 1 year (Dec. 2014 to Nov. 2015) by using an intact soil core (in-situ) incubation technique in 0–10 cm beneath the canopy of selected tree species. The study was carried out in a protected region in the South-Central ridge of Delhi. Our results demonstrate the effect of tree species on N-transformation rates. A noticeable seasonal variation was observed in all the processes, which were higher in monsoon and lower in winter. The rate of N min was highest under the canopy of Ficus religiosa (66.4 µg g−1 year−1) and lowest under Azadirachta indica (24.90 µg g−1 year−1). The rate of nitrification was highest under Ficus religiosa (39.90 µg g−1 year−1) and lowest under Cassia fistula (12.70 µg g−1 year−1). Similarly, the rate of ammonification was maximum under Ficus religiosa (26.6 µg g−1 year−1) and minimum under Azadirachta indica (10.7 µg g−1 year−1). Rates of N-transformation were positively correlated with soil moisture and temperature under few tree species indicating that soil properties control these processes. The higher rates of N-transformation under native tree species than the non-native ones suggest their effect on these vital ecosystem processes and regulating ecosystem function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Source: Agromet Observatory, Division of Agricultural Physics, IARI, New-Delhi)

Fig. 3

Similar content being viewed by others

References

Download references

Acknowledgements

We are grateful to the Head, Department of Botany, University of Delhi, for providing the necessary facilities to conduct this study. We are also grateful to Late Air-Vice Marshal Vinod Rawat for cooperating and allowing to work within the forest. The authors are thankful to the laboratory staff of the Department of Botany, University of Delhi, forest authority, and their team for immense help and support throughout this research. The first author is thankful to UGC for providing a NON-NET fellowship for the entire duration of the study. The corresponding author thanks the University of Delhi for providing Research and Development Grant during 2014–15 and 2015–16 and the Institution of Eminence (IoE) for Faculty Research Programme (FRP) grant 2020-21.

Funding

Financial support received from the Research and Development Grant and Institution of Eminence (IoE) of the University of Delhi is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shikha Prasad or Ratul Baishya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Data availability

The data that support the findings of this study are available from the corresponding author, RB, upon reasonable request.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, S., Baishya, R. Effect of tree species and seasons on soil nitrogen transformation rates in the semi-arid forest of Delhi, India. Vegetos 35, 219–227 (2022). https://doi.org/10.1007/s42535-021-00291-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42535-021-00291-1

Keywords

Navigation