Skip to main content
Log in

Evaluation of genoprotective and antioxidative potentiality of ethanolic extract of N. sativa seed in streptozotocin induced diabetic albino rats

  • Research Articles
  • Published:
Vegetos Aims and scope Submit manuscript

Abstract

In the present study oxidative stress, DNA damage in streptozotocin induced diabetic rats and its repair after treating with ethanolic extract of Nigella sativa seed were evaluated via comet assay and estimation of SOD and TBARS. Blood lymphocytes of Streptozotocin (60 mg/kg BW) induced diabetic rats showed significant increase (p < 0.05) in DNA damage as evidenced by comet tail length, due to the formation of reactive oxygen species (ROS) leading to genotoxicity. Feeding rats with ethanolic extract of N. sativa seed (500 mg/kg BW) significantly (p < 0.05) improved the level of SOD and TBARS and decreased the comet tail length and percentage of comet cells, indicating the antioxidative and genoprotective potentiality of Nigella sativa seed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Plate A
Plate B
Plate C
Plate D
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akbarzadeh A, Norouzian D, Mehrabi MR, Jamshidi Sh, Farhangi A, Allah Verdi A, Mofidian SMA, Lame Rad B (2007) Induction of diabetes by Streptozotocin in rats. Indian J Clin Biochem 22(2):60–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al Wafai RJ (2013) Nigella sativa and thymoquinone suppress cyclooxygenase-2 and oxidative stress in pancreatic tissue of streptozotocin-induced diabetic rats. Pancreas 42(5):841–849

    Article  CAS  PubMed  Google Scholar 

  • Alam P, Yusufoglu H, Alam A (2013) HPTLC densitometric method for analysis of thymoquinone in Nigella sativa extracts and marketed formulations. Asian Pac J Trop Dis 3(6):467–471

    Article  CAS  PubMed Central  Google Scholar 

  • Ali BH, Blunden G (2003) Pharmacological and toxicological properties of Nigella sativa. Phytother Res 17:299–305

    Article  CAS  PubMed  Google Scholar 

  • Babazadeh B, Sadeghnia HR, Kapurchal ES, Nasri S, Najaran ZT (2012) Protective effect of Nigella sativa and thymoquinone on serum/glucose deprivation-induced DNA damage in PC12 cells. Avicenna J Phytomed 2(3):125–132

    PubMed  PubMed Central  Google Scholar 

  • Badary OA (1999) Thymoquinone attenuates ifosfamide-induced Fanconisyndromein rats and enhances its antitumor activity in mice. J Ethnopharmacol 67:135–142

    Article  CAS  PubMed  Google Scholar 

  • Badary OA, Taha RA, Gamal el-Din AM, Abdel-Wahab MH (2003) Thymoquinone Is a potent superoxide anion scavenger. Drug Chemical Toxicol 26:87–98

    Article  CAS  Google Scholar 

  • Biswas M, Kar B, Bhattacharya S, Kumar RB, Ghosh AK, Haldar PK (2011) Antihyperglycemic activity and antioxidant role of Terminalia arjuna leaf in streptozotocin-induced diabetic rats. Pharm Biol 49(4):335–340

    Article  PubMed  Google Scholar 

  • Burits M, Bucar F (2000) Antioxidant activity of Nigella sativa essential oil. Phytother Res 14:323–328

    Article  CAS  PubMed  Google Scholar 

  • Damasceno DC, Netto AO, Iessi IL, Gallego FQ, Corvino SB, Dallaqua B, Sinzato YK, Bueno A, Calderon IPM, Rudge MVC (2014) Streptozotocin-induced diabetes models: pathophysiological mechanisms and fetal outcomes. Biomed Res Int 2014(2014):819065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Datta NJ, Namasivayam A (2003) In vitro effect of methanol on folate-deficient rat hepatocytes. Drug Alcohol Depend 71:87–91

    Article  CAS  PubMed  Google Scholar 

  • David MN (1996) The pathophysiology of diabetic complications. Ann Intern Med 124:86–89

    Article  Google Scholar 

  • El-Tantawy WH, Temraz A (2018) Management of diabetes using herbal extracts: review. Arch Physiol Biochem 124(5):383–389

    Article  CAS  PubMed  Google Scholar 

  • Erejuwa OO, Sulaiman SA, Wahab MSA, Sirajudeen KNS, Salzihan M, Salleh M, Gurtu S (2010) Antioxidant protective effect of Glibenclamide and Metformin in combination with honey in pancreas of streptozotocin-induced diabetic Rats. Int J Mol Sci 11(5):2056–2066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabricant DS, Farnsworth NR (2001) The value of the plants used in traditional medicine for drug discovery. Environ Health Perspect 109:69–75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorentino TV, Prioletta A, Zuo P, Folli F (2013) Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des 19(32):5695–5703

    Article  CAS  PubMed  Google Scholar 

  • Gilhotra N, Dhingra D (2011) Thymoquinone produced antianxiety-like effects in mice through modulation of GABA and NO levels. Pharmacol Rep 63:660–669

    Article  CAS  PubMed  Google Scholar 

  • Hossein H, Siavash P, Marjan NA, Sadeghnia Hamid R, Toktam Z (2007) Effect of thymoquinone and Nigella sativa seeds oil on lipid peroxidation level during global cerebral ischemia-reperfusion injury in rat hippocampus. Phytomedicine 14:621–627

    Article  Google Scholar 

  • Houghton PJ, Zarka R, De las Heras B, Hoult JR (1995) Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Med 61:33–36

    Article  CAS  PubMed  Google Scholar 

  • Ilhan A, Gurel A, Armutcu F, Kamisli S, Iraz M (2005) Antiepileptogenic and antioxidant effects of Nigella sativa oil against pentylenetetrazol-induced kindling in mice. Neuropharmacology 49:456–464

    Article  CAS  PubMed  Google Scholar 

  • Isabelle M, Michel P, Dominique L (2005) Antioxidant strategies in the treatment of stroke. Free Radical Biol Med 39:429–443

    Article  Google Scholar 

  • Janusz B, Michal A, Renata K, Katarzyna W, Marek Z et al (2004) DNA damage and repair in type 2 diabetes mellitus. Mutat Res 554:297–304

    Article  Google Scholar 

  • Kaatabi H, Bamosa AO, Badar A, Al-Elq A, Abou-Hozaifa B, Lebda F, Al-Khadra A, Al-Almaie S (2015) Nigella sativa improves glycemic control and ameliorates oxidative stress in patients with type 2 Diabetes Mellitus: placebo controlled participant blinded clinical trial. PLoS ONE 10(2):e0113486

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaneto NY, Kawamori D, Miyatsuka T, Matsuoka TA, Matsuhisa M, Yamasaki Y (2006) Role of oxidative stress, endoplasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic beta-cell dysfunction and insulin resistance. Int J Biochem Cell Biol 38(5–6):782–793

    Article  CAS  PubMed  Google Scholar 

  • Kanter M (2008) Effects of Nigella sativa and its major constituent, Thymoquinone on sciatic nerves in experimental diabetic neuropathy. Neurochem Res 33:87–96

    Article  CAS  PubMed  Google Scholar 

  • Kanter M, Coskun O, Kalayci M, Buyukbas S, Cagavi F (2006) Neuroprotective effects of Nigella sativa on experimental spinal cord injury in rats. Hum Exp Toxicol 25:127–133

    Article  CAS  PubMed  Google Scholar 

  • Kassie F, Parzefall W, Knasmüller S (2000) Single cell gel electrophoresis assay: a new technique for human biomonitoring studies. Mutat Res 463:13–31

    Article  CAS  PubMed  Google Scholar 

  • Kedziora-Kornatowska K, Szewczyk-Golec K, Kozakiewicz M, Pawluk H, Czuczejko J, Kornatowski T et al (2009) Melatonin improves oxidative stress parameters measured in the blood of elderly type 2 diabetic patients. J Pineal Res 46:333–337

    Article  CAS  PubMed  Google Scholar 

  • Khader M, Bresgen N, Eckl PM (2010) Antimutagenic effects of ethanolic extracts from selected Palestinian medicinal plants. Journal of Ethnopharmacy 127(2):319–324

    Article  CAS  Google Scholar 

  • Kumar GPS, Arulselvan P, Kumar SD, Subrimaniam PS (2006) Antidiabetic activity of fruits of Terminalia chebulaon STZ induced diabetic rats. J Health Sci 52:283–291

    Article  Google Scholar 

  • Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 5:216–226

    Article  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SH, Tayarani-Najaran Z, Asghari M, Sadeghnia HR (2010) Protective effect of Nigella sativa extract and Thymoquinone on serum/glucose deprivation-induced PC12 cells death. Cell Mol Neuro biol 30:591–598

    Article  CAS  Google Scholar 

  • Nehar S, Kumari M (2013) Ameliorating Effect of Nigella sativa oil in thioacetamide-induced liver cirrhosis in albino rats. Indian J Pharm Educ Res 47(2):135–139

    Google Scholar 

  • Nehar S, Rani P (2011) HPTLC studies on ethanolic extract of Nigella sativa Linn. seeds and its phytochemical standardization. Ecoscan 1:105–108

    Google Scholar 

  • Nichans WG, Samuelson B (1968) Formation of malondialdehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem 6:126–130

    Article  Google Scholar 

  • Pan HZ, Chang D, Feng LG, Xu FJ, Kuang HY, Lu MJ (2007) Oxidative damage to DNA and its relationship with diabetic complications Biomedical andEvironmental Sciences. Biomed Environ Sci 20(2):160–163

    CAS  PubMed  Google Scholar 

  • Pavana P, Sethupathy S, Manoharan S (2007) Antihyperglycemic and antilipidperoxidative effects of Tephrosia purpurea seed extract in streptozotocin induced diabetic rats. Indian J Clin Biochem 22:77–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajkamal G, Suresh K, Sugunadevi G, Vijayaanand MA, Rajalingam K (2010) Evaluation of chemopreventive effects of Thymoquinone on cell surface glycoconjugates and cytokeratin expression during DMBA induced hamster buccal pouch carcinogenesis. BMB Rep 43(10):664–669

    Article  CAS  PubMed  Google Scholar 

  • Salem ML (2005) Immunomodulatory and therapeutic properties of the Nigella sativa L seed. Int Immunopharmacol 5:1749–1770

    Article  CAS  PubMed  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  PubMed  Google Scholar 

  • Yaduvanshi SK, Srivastav N, Prasad GB, Yadav M, Jain S, Yadav H (2012). Genotoxic potential of reactive oxygen species (ROS) Lipid peroxidation and DNA repair, enzymes (FPG and ENDO iii) in alloxan injected diabetic rats. Endocr Metab Immuno Disord Target 28 PMID: 23210730.

Download references

Acknowledgements

The author is grateful to the University Grant Commission, New Delhi, for providing financial assistance by granting major research project. (No. 37-325/2009 SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamshun Nehar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nehar, S., Rani, P. & Kumar, C. Evaluation of genoprotective and antioxidative potentiality of ethanolic extract of N. sativa seed in streptozotocin induced diabetic albino rats. Vegetos 34, 453–459 (2021). https://doi.org/10.1007/s42535-021-00201-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42535-021-00201-5

Keywords

Navigation