Skip to main content
Log in

Stationary states of a dissipative two-qubit quantum channel and their applications for quantum machine learning

  • Research Article
  • Published:
Quantum Machine Intelligence Aims and scope Submit manuscript

Abstract

Entangled-state preparation and preservation are the cornerstones of any quantum information platform. However, the strongest adversaries in quantum information science are unwanted environmental effects such as decoherence and dissipation. Here, we address how to control and harness these unwanted effects that arise from the coupling of a system with its environment, to provide stationary entangled states for quantum machine learning (QML). To do so, we design a dissipative quantum channel, i.e., a two-qubit system interacting with a squeezed vacuum field reservoir, and study the output state of the channel by solving the corresponding master equation, especially, in the small squeezing regime. We show that the time-dependent output state of the channel is the so-called two-qubit X-states that generalize many families of entangled two-qubit states. Also, by considering a general Bell diagonal state as the initial state of the system, we reveal that this dissipative channel generates two well-known classes of entangled mixed state and Werner-like states in the steady-state regime. Moreover, this channel provides an efficient way to determine whether a given initial state results in a stationary entangled state or not. Finally, we examine the potential application of the designed two-qubit channel for QML. In this line, we propose a general theoretical scheme for quantum neural networks (QNNs) implemented with the variational quantum circuits, which encode data in continuous variables (CVs) of the two-qubit states. The linear (also referred to as affine) and nonlinear (activation function) transformations are enacted in the QNN using the stationary states of the two-qubit channel and measurement process, respectively. Finally, we proceed to test our proposed model by solving some supervised binary classification tasks. Integrating the non-unitary transformation and parallel-processed neural computing on such a two-qubit channel establishes the requirements for a meaningful QNN. Such a CV-QNN model with sufficient layers may execute any algorithm implementable on a universal CV quantum computer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Arute F, et al. (2019) Quantum supremacy using a programmable superconducting processor. Nature 574.7779:505–510

    Article  Google Scholar 

  • Bai S-Y, An J-H (2021) Generating stable spin squeezing by squeezed-reservoir engineering. Phys Rev Lett 127.8:083602

    Article  MathSciNet  Google Scholar 

  • Baumgratz T, Cramer M, Plenio MB (2014) Quantifying coherence. Physical review letters 113.14:140401

    Article  Google Scholar 

  • Bausch J (2020) Recurrent quantum neural networks. Adv Neural Inf Process Syst 33:1368–1379

    Google Scholar 

  • Benedetti M, Lloyd E, Sack S, Fiorentini M (2019) Parameterized quantum circuits as machine learning models. Quantum Science and Technology 4:043001

    Article  Google Scholar 

  • Bottou L (2010) Large-scale machine learning with stochastic gradient descent.. In: Proceedings of COMPSTAT’2010: 19th international conference on computational statistics, Paris France, August 22-27, 2010 keynote, invited and contributed papers. Physica-Verlag HD, pp 177–186

  • Breuer H-P, Petruccione F (2002) The theory of open quantum systems. Oxford University Press on Demand

  • Bub J. (2001) Quantum entanglement and information

  • Bukov M, et al. (2018) Reinforcement learning in different phases of quantum control. Phys Rev X 8.3:031086

    Google Scholar 

  • Cai X-D, Wu D, Su Z-E, Chen M-C, Wang X-L, Li L, Liu N-L, Lu C-Y, Pan J-W (2015) Entanglement-based machine learning on a quantum computer. Phys Rev Lett 114:110504

    Article  Google Scholar 

  • Campagne-Ibarcq P, Eickbusch A, Touzard S, Zalys-Geller E, Frattini N, Sivak V, Reinhold P, Puri S, Shankar S, Schoelkopf R et al (2019) arXiv:1907.12487

  • Cao Y, Guerreschi GG, Aspuru-Guzik A (2017) Quantum neuron: an elementary building block for machine learning on quantum computers. arXiv:1711.11240

  • Cappelletti W, Erbanni R, Keller J (2020) Polyadic quantum classifier. In: 2020 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, pp 22–29

  • Carleo G, Troyer M (2017) Solving the quantum many-body problem with artificial neural networks. Science 355:602

    Article  MathSciNet  MATH  Google Scholar 

  • Chapman RJ, Ferrie C, Peruzzo A (2016) Experimental demonstration of selfguided quantum tomography. Phys Rev Lett 117:040402

    Article  Google Scholar 

  • Chen Y, et al. (2021) Detecting quantum entanglement with unsupervised learning. Quantum Science and Technology 7.1:015005

    Google Scholar 

  • Chen SY-C, Yoo S (2021) Federated quantum machine learning. Entropy 23.4:460

    Article  Google Scholar 

  • Chitambar E, Gour G (2019) Quantum resource theories. Rev Mod Phys 91:025001

    Article  MathSciNet  Google Scholar 

  • Choi M-D (1975) Completely positive linear maps on complex matrices. Linear Algebra and Its Applications 10:285

    Article  MathSciNet  MATH  Google Scholar 

  • Clark S, Peng A, Gu M, Parkins S (2003) Unconditional preparation of entanglement between atoms in cascaded optical cavities. Phys Rev Lett 91:177901

    Article  Google Scholar 

  • Clerk AA et al (2010) Introduction to quantum noise, measurement, and amplification. Rev Mod Phys 82.2:1155

    Article  MathSciNet  MATH  Google Scholar 

  • Deutsch D (1985) Quantum theory, the Church–Turing principle and the universal quantum computer. Proceedings of the Royal Society of London. A Mathematical and Physical Sciences 400:97

    Article  MathSciNet  MATH  Google Scholar 

  • Deutsch DE (1989) Quantum computational networks. Proceedings of the Royal Society of London. A Mathematical and Physical Sciences 425:73

    Article  MathSciNet  MATH  Google Scholar 

  • Drummond PD, Ficek Z, Spicek Z (2004) Quantum squeezing, vol 27. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Dua D, Graff C (2017) UCI machine learning repository. http://archive.ics.uci.edu/ml

  • Duan L. -M., et al. (2000) Inseparability criterion for continuous variable systems. Phys Rev Lett 84.12:2722

    Article  Google Scholar 

  • Duan L-M, Kimble H (2003) Efficient engineering of multiatom entanglement through single-photon detections. Phys Rev Lett 90:253601

    Article  Google Scholar 

  • Ekert A, Jozsa R (1998) Quantum algorithms: entanglementenhanced information processing. Philosophical Transactions of the Royal Society of London. Series A Mathematical, Physical and Engineering Sciences 356:1769

    Article  MathSciNet  MATH  Google Scholar 

  • Fu-Li L, Hong-Rong L (2004) An intuitive expression for inseparability condition of a two-mode squeezed vacuum state in a thermal environment. Chin Phys Lett 21:991

    Article  Google Scholar 

  • Gemme G, Grossi M, Ferraro D, Vallecorsa S, Sassetti M (2022) IBM quantum platforms: a quantum battery perspective. Batteries 8:43

    Article  Google Scholar 

  • Ghasemian E, Tavassoly M (2017) Quantum dynamics of a BEC interacting with a single-mode quantized eld under the inuence of a dissipation process: thermal and squeezed vacuum reservoirs. Laser Phys 27:095202

    Article  Google Scholar 

  • Ghasemian E, Tavassoly M (2021) Generation of Werner-like states via a two-qubit system plunged in a thermal reservoir and their application in solving binary classification problems. Sci Rep 11.1:1

    Google Scholar 

  • Gupta S, Zia R (2001) Quantum neural networks. J Comput Syst Sci 63:355

    Article  MathSciNet  MATH  Google Scholar 

  • Gurvits L (2003) Classical deterministic complexity of Edmonds’ problem and quantum entanglement. In: Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pp 10–19

  • Hanneke D, et al. (2010) Realization of a programmable two-qubit quantum processor. Nat Phys 6.1:13–16

    Article  Google Scholar 

  • Havlíček V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow JM, Gambetta JM (2019) Supervised learning with quantum-enhanced feature spaces. Nature 567:209

    Article  Google Scholar 

  • Hentschel A, Sanders BC (2010) Machine learning for precise quantum measurement. Phys Rev Lett 104:063603

    Article  Google Scholar 

  • Herbert N (2011) Quantum reality: Beyond the new physics. Anchor

  • Hernandez M, Orszag M (2008) Decoherence and disentanglement for two qubits in a common squeezed reservoir. Phys Rev A 78:042114

    Article  Google Scholar 

  • Hiesmayr BC (2021) Free versus bound entanglement, a NP-hard problem tackled by machine learning. Sci Rep 11.1:19739

    Article  Google Scholar 

  • Horodecki M, Horodecki P (1999) Reduction criterion of separability and limits for a class of distillation protocols. Phys Rev A 59.6:4206

    Article  Google Scholar 

  • Horodecki R (1996) Information-theoretic aspects of inseparability of mixed states. Phys Rev A 54.3:1838

    Article  MathSciNet  Google Scholar 

  • Hur T, Kim L, Park DK (2022) Quantum convolutional neural network for classical data classification. Quantum Machine Intelligence 4.1:3

    Article  Google Scholar 

  • Ikram M, Li F. -l., Zubairy MS (2007) Disentanglement in a two-qubit system subjected to dissipation environments. Phys Rev A 75:062336

    Article  Google Scholar 

  • Ishizaka S, Hiroshima T (2000) Maximally entangled mixed states under nonlocal unitary operations in two qubits. Phys Rev A 62:022310

    Article  Google Scholar 

  • Jamiołkowski A (1972) Linear transformations which preserve trace and positive semideniteness of operators. Rep Math Phys 3:275

    Article  MathSciNet  MATH  Google Scholar 

  • Ji Y-H, Liu Y-M (2013) Investigations into quantum correlation of coupled qubits in a squeezed vacuum reservoir. Chin Phys B 22.2:020305

    Article  Google Scholar 

  • Jordan TF (2009) .. In: Journal of Physics: Conference Series, vol 196 . IOP Publishing, p 012010

  • Joshi A, Hassan SS, Xiao M (2005) Controlling subluminal to superluminal behavior of group velocity with squeezed reservoir. Phys Rev A 72:055803

    Article  Google Scholar 

  • Jozsa R (1997) Entanglement and quantum computation. arXiv:9707034

  • Khrennikov A (2020) Quantum versus classical entanglement: eliminating the issue of quantum nonlocality. Found Phys 50.12:1762–1780

    Article  MathSciNet  MATH  Google Scholar 

  • Killoran N, et al. (2019) Continuous-variable quantum neural networks. Physical Review Research 1.3:033063

    Article  Google Scholar 

  • Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv:1412.6980

  • Kowalewska-Kudłaszyk A, Leoński W (2010) Squeezed vacuum reservoir effect for entanglement decay in the nonlinear quantum scissor system. Journal of Physics B. Atomic, molecular and optical physics 43:205503

    Article  MATH  Google Scholar 

  • Kraus B, et al. (2008) Preparation of entangled states by quantum Markov processes. Phys Rev A 78.4:042307

    Article  Google Scholar 

  • Krauter H, et al. (2011) Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Phys Rev Lett 107.8:080503

    Article  Google Scholar 

  • Levine Y, Yakira D, Cohen N, Shashua A (2017) Deep learning and quantum entanglement: Fundamental connections with implications to network design. arXiv:1704.01552

  • Lin Y, Gaebler J, Reiter F, Tan TR, Bowler R, Sørensen A, Leibfried D, Wineland DJ (2013) Dissipative production of a maximally entangled steady state of two quantum bits. Nature 504:415

    Article  Google Scholar 

  • Lin Y, Gaebler J, Reiter F, Tan TR, Bowler R, Sørensen A, Leibfried D, Wineland D, Collaboration N et al (2014) . APS March Meeting Abstracts 2014:M34–012

    Google Scholar 

  • Lingaraju NB, et al. (2022) Bell state analyzer for spectrally distinct photons. Optica 9.3:280–283

    Article  Google Scholar 

  • Lloyd S, et al. (2020) Quantum embeddings for machine learning. arXiv:2001.03622

  • Lu S, Huang S, Li K, Li J, Chen J, Lu D, Ji Z, Shen Y, Zhou D, Zeng B (2018) Separability-entanglement classifier via machine learning. Phys Rev A 98:012315

    Article  Google Scholar 

  • Ma Y-C, Yung M-H (2018) Transforming Bells inequalities into state classifiers with machine learning. npj Quantum Information 4:1

    Article  Google Scholar 

  • MacKay DJ, Mac Kay DJ et al (2003) Information theory inference and learning algorithms. Cambridge University Press, Cambridge

    Google Scholar 

  • Magesan E, Gambetta JM, Córcoles AD, Chow JM (2015) Machine learning for discriminating quantum measurement trajectories and improving readout. Phys Rev Lett 114:200501

    Article  Google Scholar 

  • Malouf R (2002) A comparison of algorithms for maximum entropy parameter estimation. COLING-02: The 6th conference on natural language learning 2002 (CoNLL-2002)

  • Mari A, Bromley TR, Izaac J, Schuld M, Killoran N (2020) Transfer learning in hybrid classical-quantum neural networks. Quantum 4:340

    Article  Google Scholar 

  • Memarzadeh L, Mancini S (2011) Stationary entanglement achievable by environment-induced chain links. Phys Rev A 83.4:042329

    Article  Google Scholar 

  • Mengoni R, Di Pierro A (2019) Kernel methods in quantum machine learning. Quantum Machine Intelligence 1.3-4:65–71

    Article  Google Scholar 

  • Michielsen K, Nocon M, Willsch D, Jin F, Lippert T, De Raedt H (2017) Benchmarking gate-based quantum computers. Comput Phys Commun 220:44

    Article  MathSciNet  Google Scholar 

  • Mizel A, Lidar DA, Mitchell M (2007) Simple proof of equivalence between adiabatic quantum computation and the circuit model. Physical review letters 99:070502

    Article  Google Scholar 

  • Moll N, Barkoutsos P, Bishop LS, Chow JM, Cross A, Egger DJ, Filipp S, Fuhrer A, Gambetta JM, Ganzhorn M et al (2018) Quantum optimization using variational algorithms on near-term quantum devices. Quantum Science and Technology 3:030503

    Article  Google Scholar 

  • Narayanan A (1999) Quantum computing for beginners. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol 3. IEEE

  • Nielsen MA, Chuang I (2002) Quantum computation and quantum information, 558–559. Published in the United States of America by Cambridge University Press, New York

  • Nielson MA, Chuang IL (2000) Quantum computation and quantum information. Published in the United States of America by Cambridge University Press, New York

  • Petit L, Eenink H, Russ M, Lawrie W, Hendrickx N, Philips S, Clarke J, Vandersypen L, Veldhorst M (2020) Universal quantum logic in hot silicon qubits. Nature 580.7803:355–359

    Article  Google Scholar 

  • Plenio MB, Huelga SF (2002) Entangled light from white noise. Phys Rev Lett 88.19:197901

    Article  Google Scholar 

  • Rabanal P, Rodríguez I, Rubio F (2007) Using river formation dynamics to design heuristic algorithms. In: International conference on unconventional computation. Springer, pp 163–177

  • Rabinovich MI, Varona P, Selverston AI, Abarbanel HD (2006) Dynamical principles in neuroscience. Rev Mod Phys 78:1213

    Article  Google Scholar 

  • Rau A (2000) Manipulating two-spin coherences and qubit pairs. Phys Rev A 61:032301

    Article  MathSciNet  Google Scholar 

  • Rau A (2009) Algebraic characterization of X-states in quantum information. Journal of physics a: Mathematical and theoretical 42:412002

    Article  MathSciNet  MATH  Google Scholar 

  • Scala F, et al. (2022) Quantum variational learning for entanglement witnessing. In: 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy. https://doi.org/10.1109/IJCNN55064.2022.9892080, pp 1–8

  • Schlimgen AW et al (2021) Quantum simulation of open quantum systems using a unitary decomposition of operators. Phys Rev Lett 127.27:270503

    Article  MathSciNet  Google Scholar 

  • Schuld M, et al. (2020) Circuit-centric quantum classifiers. Phys Rev A 101.3:032308

    Article  MathSciNet  Google Scholar 

  • Schuld M, Killoran N (2019) Quantum machine learning in feature hilbert spaces. Physical review letters 122.4:040504

    Article  Google Scholar 

  • Schuld M, Sinayskiy I, Petruccione F (2014) The quest for a quantum neural network. Quantum Inf Process 13:2567

    Article  MathSciNet  MATH  Google Scholar 

  • Scully MO, Zubairy MS (1999) Quantum optics

  • Shen Y, Harris NC, Skirlo S, Prabhu M, Baehr-Jones T, Hochberg M, Sun X, Zhao S, Larochelle H, Englund D et al (2017) Deep learning with coherent nanophotonic circuits. Nature photonics 11:441

    Article  Google Scholar 

  • Smart SE, Hu Z, Kais S, Mazziotti DA (2022) . Communications Physics 5:1

    Article  Google Scholar 

  • Takeda S, Furusawa A (2019) . APL Photonics 4:060902

    Article  Google Scholar 

  • Ticozzi F, Viola L (2012) Stabilizing entangled states with quasi-local quantum dynamical semigroups. Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Sciences 370:5259

    Article  MathSciNet  MATH  Google Scholar 

  • Touzard S, Kou A, Frattini N, Sivak V, Puri S, Grimm A, Frunzio L, Shankar S, Devoret M (2019) Gated conditional displacement readout of superconducting qubits. Phys Rev Lett 122: 080502

    Article  Google Scholar 

  • Verstraete F, Audenaert K, De Moor B (2001) Maximally entangled mixed states of two qubits. Phys Rev A 64.1:012316

    Article  Google Scholar 

  • Verstraete F, Wolf MM, Ignacio Cirac J (2009) Quantum computation and quantum-state engineering driven by dissipation. Nat Phys 5:633

    Article  Google Scholar 

  • Werner RF (1989) Quantum states with Einstein-Podolsky-Rosen correlations admitting a hiddenvariable model. Phys Rev A 40:4277

    Article  MATH  Google Scholar 

  • Wiseman HM, Milburn GJ (2009) Quantum measurement and control. Cambridge University Press

  • Wu S-X, Yu C-S (2017) The precision of parameter estimation for dephasing model under squeezed reservoir. Int J Theor Phys 56:1198

    Article  MATH  Google Scholar 

  • Yanay Y, Clerk AA (2018) Reservoir engineering of bosonic lattices using chiral symmetry and localized dissipation. Phys Rev A 98.4:043615

    Article  Google Scholar 

  • Yang M, et al. (2019) Experimental simultaneous learning of multiple nonclassical correlations. Phys Rev Lett 123.19:190401

    Article  Google Scholar 

  • Yang Z, Zhang X (2020) Entanglement-based quantum deep learning. New J Phys 22:033041

    Article  MathSciNet  Google Scholar 

  • Yeo Y (2008) Local noise can enhance two-qubit teleportation. Phys Rev A 78:022334

    Article  Google Scholar 

  • Yu T, Eberly J (2004) Finite-time disentanglement via spontaneous emission. Phys Rev Lett 93:140404

    Article  Google Scholar 

  • Yu T, Eberly J (2006) Quantum open system theory: bipartite aspects. Phys Rev Lett 97:140403

    Article  Google Scholar 

  • Zak M, Williams CP (1998) Quantum neural nets. Int J Theor Phys 37:651

    Article  MathSciNet  MATH  Google Scholar 

  • Zeytinoğlu S, İmamoġlu A, Huber S (2017) Engineering matter interactions using squeezed vacuum. Phys Rev X 7:021041

    Google Scholar 

  • Zhang Y-S, et al. (2002) Experimental preparation of the Werner state via spontaneous parametric down-conversion. Phys Rev A 66.6:062315

    Article  Google Scholar 

  • Zhao B, Chen Z-B, Chen Y-A, Schmiedmayer J, Pan J-W (2007) Robust creation of entanglement between remote memory qubits. Phys Rev Lett 98.24:240502

    Article  Google Scholar 

  • Zippilli S, Vitali D (2021) Dissipative engineering of Gaussian entangled states in harmonic lattices with a single-site squeezed reservoir. Phys Rev Lett 126:020402

    Article  MathSciNet  Google Scholar 

  • Zoufal C, Lucchi A, Woerner S (2021) Variational quantum Boltzmann machines. Quantum Machine Intelligence 3:1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E. Gh is responsible for the inception of the project and its ongoing design and development.

Corresponding author

Correspondence to E. Ghasemian.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Human and animal ethics

Not applicable

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix.: Dissipative dynamics of a two-qubit system

Appendix.: Dissipative dynamics of a two-qubit system

In order to solve the master equation (5), we assume the following initial state for the two-qubit system

$$ \rho (0)=\begin{bmatrix} \rho_{11} & \rho_{12} & \rho_{13} & \rho_{14}\\ \rho_{21} & \rho_{22} & \rho_{23} & \rho_{24}\\ \rho_{31} & \rho_{32} & \rho_{33} & \rho_{34}\\ \rho_{41} & \rho_{42} & \rho_{43} & \rho_{44}\\ \end{bmatrix}. $$
(23)

The general solution of the master equation (5) is too cumbersome. However, for small squeezing r ≪ 1, the analytical expression of the density matrix of the two-qubit system at time t can be obtained as

$$ \begin{array}{@{}rcl@{}} \rho_{11}(t)&=& \rho_{11} e^{-4at}, \\ \rho_{12}(t)&=& \frac{1}{2}\rho_{12} (e^{-4at}+e^{-2at})+\frac{1}{2}\rho_{13} (e^{-4at}-e^{-2at}), \\ \rho_{13}(t)&=& \frac{1}{2}\rho_{12} (e^{-4at}-e^{-2at})+\frac{1}{2}\rho_{13} (e^{-4at}+e^{-2at}), \\ \rho_{14}(t)&=& \rho_{14} e^{-2at}, \\ \rho_{22}(t)&=& 2\rho_{11} e^{-4at}at+\frac{e^{-4at}}{4}(\rho_{22}+\rho_{23}+\rho_{32}+\rho_{33})\\ &&+\frac{e^{-2at}}{2}(\rho_{22}-\rho_{33})+\frac{1}{4}(\rho_{22}-\rho_{23} - \rho_{32}+\rho_{33}), \\ \rho_{23}(t)&=& 2\rho_{11} e^{-4at}at+\frac{e^{-4at}}{4}(\rho_{22}+\rho_{23}+\rho_{32}+\rho_{33})\\ &&+\frac{e^{-2at}}{2}(\rho_{23}-\rho_{32}), \\ \rho_{24}(t)&=& -e^{-4at}(\rho_{12}+\rho_{13})+\frac{e^{-2at}}{2}\\ &&\times(2\rho_{12}+2\rho_{13}+\rho_{24}+\rho_{34})+\frac{1}{2}(\rho_{24}-\rho_{34}), \\ \rho_{33}(t)&=& 2\rho_{11} e^{-4at}at+\frac{e^{-4at}}{4}(\rho_{22}+\rho_{23}+\rho_{32}+\rho_{33})\\ &&-\frac{e^{-2at}}{2}(\rho_{22}-\rho_{33})+\frac{1}{4}(\rho_{22}-\rho_{23} - \rho_{32}+\rho_{33}), \\ \rho_{34}(t)&=&-e^{-4at}(\rho_{12}+\rho_{13})+\frac{e^{-2at}}{2}\\ &&\times(2\rho_{12}+2\rho_{13}+\rho_{24}+\rho_{34})-\frac{1}{2}(\rho_{24}-\rho_{34}), \end{array} $$
$$ \begin{array}{@{}rcl@{}} \rho_{44}(t)&=& \rho_{11}(1-4e^{-4at}at)-e^{-4at}\\ &&\times (\rho_{22}+\rho_{23}+\rho_{32}+\rho_{33})\\ && +\frac{1}{2}(2\rho_{11}+\rho_{22}+\rho_{23}+\rho_{32}+\rho_{33}+2\rho_{44}). \end{array} $$
(24)

where \(a=\frac {\Gamma }{2} \cosh ^{2}r\). Note that \(\rho _{ji}(t)= \rho _{ij}^{*}(t)\) and also ρ11(t) + ρ22(t) + ρ33(t) + ρ44(t) = 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemian, E. Stationary states of a dissipative two-qubit quantum channel and their applications for quantum machine learning. Quantum Mach. Intell. 5, 13 (2023). https://doi.org/10.1007/s42484-023-00096-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42484-023-00096-2

Keywords

Navigation