Skip to main content
Log in

The Precision of Parameter Estimation for Dephasing Model Under Squeezed Reservoir

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the precision of parameter estimation for dephasing model under squeezed environment. We analytically calculate the dephasing factor γ(t) and obtain the analytic quantum Fisher information (QFI) for the amplitude parameter α and the phase parameter ϕ. It is shown that the QFI for the amplitude parameter α is invariant in the whole process, while the QFI for the phase parameter ϕ strongly depends on the reservoir squeezing. It is shown that the QFI can be enhanced for appropriate squeeze parameters r and θ. Finally, we also investigate the effects of temperature on the QFI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  2. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Phot. 5, 222 (2011)

    Article  Google Scholar 

  3. Demkowicz-Dobrzański, R., Kołodyński, J., Guţă, M.: The elusive Heisenberg limit in quantum-enhanced metrology. Nat. Commun. 3, 1063 (2012)

    Article  Google Scholar 

  4. Vallisneri, M.: Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects. Phys. Rev. D 77, 042001 (2008)

    Article  ADS  Google Scholar 

  5. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  6. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Caves, C.M.: Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693 (1981)

    Article  ADS  Google Scholar 

  8. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  9. Huelga, S.F., Macchiavello, C., Pellizzari, T., Ekert, A.K., Plenio, M.B., Cirac, J.I.: Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79, 3865 (1997)

    Article  ADS  Google Scholar 

  10. Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)

    Article  ADS  Google Scholar 

  11. Escher, B.M., de Matos Filho, R.L., Davidovich, L.: General framework for estimating the ultimate precision limit in noisy quantumenhanced metrology. Nat. Phys. 7, 406 (2011)

  12. Sun, Z., Ma, J., Lu, X.M, Wang, X.: Fisher information in a quantum-critical environment. Phys. Rev. A 82, 022306 (2010)

    Article  ADS  Google Scholar 

  13. Humphreys, P.C., Barbieri, M., Datta, A., Walmsley, Ian A.: Quantum enhanced multiple phase estimation. Phys. Rev. Lett. 111, 070403 (2013)

    Article  ADS  Google Scholar 

  14. Yue, J.D., Zhang, Y.R., Fan, H.: Quantum-enhanced metrology for multiple phase estimation with noise. Sci. Rep. 4, 5933 (2014)

    ADS  Google Scholar 

  15. Ahmadi, M., Bruschi, D.E., Fuentes, I.: Quantum metrology for relativistic quantum fields. Phys. Rev. D 89, 065028 (2014)

    Article  ADS  Google Scholar 

  16. Tian, Z., Wang, J., Fan, H., Jing, J.: Relativistic quantum metrology in open system dynamics. Sci. Rep. 5, 7946 (2015)

    Article  ADS  Google Scholar 

  17. Wang, J., Tian, Z., Jing, J., Fan, H.: Quantum metrology and estimation of Unruh effect. Sci. Rep. 4, 7195 (2014)

    Article  ADS  Google Scholar 

  18. Tan, Q.S., Huang, Y., Yin, X., Kuang, L.M., Wang, X.: Enhancement of parameter-estimation precision in noisy systems by dynamical decoupling pulses. Phys. Rev. A 87, 032102 (2013)

    Article  ADS  Google Scholar 

  19. Demkowicz-Dobrzański, R., Maccone, L.: Using entanglement against noise in quantum metrology. Phys. Rev. Lett. 113, 250801 (2014)

    Article  ADS  Google Scholar 

  20. Anisimov, P.M.: Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. Phys. Rev. Lett. 104, 103602 (2010)

    Article  ADS  Google Scholar 

  21. Dür, W., Skotiniotis, M., Fröwis, F., Kraus, B.: Improved quantum metrology using quantum error correction. Phys. Rev. Lett. 112, 080801 (2014)

    Article  Google Scholar 

  22. Pezzé, L., Smerzi, A.: Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett. 102, 100401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  23. Hyllus, P., Laskowski, W., Krischek, R., Schwemmer, C., Wieczorek, W., Weinfurter, H., Pezzé, L., Smerzi, A.: Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321 (2012)

    Article  ADS  Google Scholar 

  24. Joo, J., Munro, W.J., Spiller, T.P.: Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011)

    Article  ADS  Google Scholar 

  25. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  26. Drummond, P.D., Ficek, Z. (eds.): Quantum Squeezing. Springer (2004)

  27. Zhong, W., Sun, Z., Ma, J., Wang, X., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87, 022337 (2013)

    Article  ADS  Google Scholar 

  28. Yao, Y., Xiao, X., Ge, L., Wang, X.G., Sun Yao, C.P.: Quantum Fisher information in noninertial frames. Phys. Rev. A 89, 042336 (2014)

    Article  ADS  Google Scholar 

  29. Zhang, Y.M., Li, X.W., Yang, W., Jin, G.R.: Quantum Fisher information of entangled coherent states in the presence of photon loss. Phys. Rev. A 88, 043832 (2013)

    Article  ADS  Google Scholar 

  30. Ma, J., Wang, X., Sun, C.P., Nori, F.: Quantum spin squeezing. Phys. Rep. 509, 89 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  31. Addis, C., Brebner, G., Haikka, P., Maniscalco, S.: Coherence trapping and information backflow in dephasing qubits. Phys. Rev. A 89, 024101 (2014)

    Article  ADS  Google Scholar 

  32. Bar-Gill, N., Bhaktavatsala Rao, D.D., Kurizki, G.: Creating nonclassical states of Bose-Einstein condensates by dephasing collisions. Phys. Rev. Lett. 107, 010404 (2011)

    Article  ADS  Google Scholar 

  33. Blanes, S., Casas, F., Oteo, J.A., Ros, J.: A pedagogical approach to the Magnus expansion. Eur. J. Phys. 31, 907 (2010)

    Article  MATH  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China, under Grant No.11375036 and 11175033, the Xinghai Scholar Cultivation Plan and the Fundamental Research Funds for the Central Universities under Grant No. DUT15LK35.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-shui Yu.

Appendix: Derive the dephasing factor γ(t)

Appendix: Derive the dephasing factor γ(t)

In this section, we will derive the dephasing factor γ(t) (12) in the dephasing processing under the squeezed vacuum reservoir. In the interaction picture, the interaction Hamiltonian can be written as

$$\begin{array}{@{}rcl@{}} H_{\mathrm{I}}(t) &=&e^{iH_{0}t}H_{\mathrm{I}}e^{-iH_{0}t} \\ &=&\sum\limits_{k}g_{k}\sigma_{z}(b_{k}^{\dagger }e^{i\omega_{k}t}+b_{k}e^{-i\omega_{k}t}). \end{array} $$
(A1)

According to the Magnus expression [33], the unitary time-evolution operator in the interaction picture can be given by

$$\begin{array}{@{}rcl@{}} U(t) &=&\mathrm{T}_{\leftarrow }\exp \left[ -i{{\int}_{0}^{t}}dt^{\prime }H_{ \mathrm{I}}(t^{\prime })\right] \\ &=&C(t)\cdot V(t), \end{array} $$
(A2)

wherethetime-dependent complex number C(t) is given by \(C(t) = \exp \left [{\sum }_{k}{g_{k}^{2}}\frac {\sin (\omega _{k}t)-\omega _{k}t}{i{\omega _{k}^{2}}}\right ] \), and the unitary operator V(t) is defined as \(V(t) = \exp \left [ \sigma _{z}{\sum }_{k}\left (\alpha _{k}b_{k}^{\dagger }-\alpha _{k}^{\ast }b_{k}\right ) \right ]\) with the amplitude coefficient \(\alpha _{k}=g_{k}\frac {1-e^{i\omega _{k}t}}{\omega _{k}}\).

The initial state of the system plus the environment is assumed to be a product state ρ s(0)⊗ρ bath. Due to the communication between the system’s Hamiltonian \(\frac {\sigma _{z}\omega _{k}}{2}\) and the interaction Hamiltonian \({\sum }_{k}g_{k}\sigma _{z}(b_{k}+b_{k}^{\dagger })\), the evolution of the reduced density matrix element for dephasing processing under squeezed vacuum reservoir is governed by [8]

$$\begin{array}{@{}rcl@{}} \rho_{ij}\left( t\right) = \left\langle i\right\vert \text{Tr}_{\mathrm{ bath}}\left\{ V(t)\rho_{s}(0)\otimes \rho_{\text{bath} }V^{\dagger}(t)\right\} \left\vert j\right\rangle. \end{array} $$
(A3)

In the above equation, the time-dependent complex number C(t) multiplied by its complex conjugation is equal to unit, so it can be omitted. For the diagonal elements of the reduced density matrix, it is easy to prove that the elements do not evolute, i.e., ρ 11(t) = ρ 11(0) and ρ 00(t) = ρ 00(0).

Then, we will characterize the dynamics of the off-diagonal elements going through the dephasing process under the squeezed vacuum reservoir. Substituting V(t) into (A3), the evolution of the element ρ 10(t) can be given as follows

$$\begin{array}{@{}rcl@{}} \rho_{10}\left( t\right) &=&\text{Tr}_{\text{bath}}\left\{ \exp \left[ \sum\limits_{k}2(\alpha_{k}b_{k}^{\dagger }-\alpha_{k}^{\ast }b_{k}) \right] \rho_{\text{bath}}\right\} \rho_{10}(0) \\ &=&\prod\limits_{k^{\prime }}\langle 0_{k^{\prime }}\vert S_{k^{\prime }}^{\dagger }\exp [ \sum\limits_{k}2(\alpha_{k}b_{k}^{\dagger }-\alpha_{k}^{\ast }b_{k}) ] S_{k^{\prime }}\vert 0_{k^{\prime }}\rangle \rho_{10}(0) \\ &=&\exp [ -\sum\limits_{k}2\vert \beta_{k}\vert^{2}] \rho_{10}(0), \end{array} $$
(A4)

where the complex number coefficient \(\beta _{k}=\alpha _{k}\cosh r+e^{i\theta }\alpha _{k}^{\ast }\sinh r\).

We can define the parameter \({\sum }_{k}2\left \vert \beta _{k}\right \vert ^{2}\) being the dephasing factor γ(t),

$$\begin{array}{@{}rcl@{}} \gamma (t) \sum\limits_{k}\left\vert \alpha_{k}\right\vert^{2}\left[ 2\cosh (2r)+\left( {\alpha_{k}^{2}}e^{-i\theta }+\alpha_{k}^{\ast 2}e^{i\theta }\right) \sinh (2r)\right] .\\ \end{array} $$
(A5)

So the evolution of the element ρ 10(t) is governed by

$$\begin{array}{@{}rcl@{}} \rho_{10}(t) =\exp [-\gamma (t)]\rho_{10}(0) =\rho_{01}(t)^{\ast }. \end{array} $$
(A6)

Substituting the amplitude coefficient α k in the time-evolution operator U(t) into the dephasing factor γ(t), we can obtain the analytic expression for the dephasing factor as

$$\begin{array}{@{}rcl@{}} \gamma (t) = \sum\limits_{k}4{g_{k}^{2}}\frac{1-\cos \omega_{k}t}{{\omega_{k}^{2}}} \left[ \cosh (2r)-\cos (\omega_{k}t-\theta )\sinh (2r)\right] .\\ \end{array} $$
(A7)

Considering the spectrum density J(ω) of the modes for the frequency ω [8] as J(ω) = 4f(ω)|g(ω)|2, performing the continuum limit of the reservoir modes and changing the sum on k in (A7) to the integral on the frequency ω, we can obtain the dephasing factor γ(t) in (10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Sx., Yu, Cs. The Precision of Parameter Estimation for Dephasing Model Under Squeezed Reservoir. Int J Theor Phys 56, 1198–1207 (2017). https://doi.org/10.1007/s10773-016-3262-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3262-x

Keywords

Navigation