Skip to main content
Log in

Batched quantum state exponentiation and quantum Hebbian learning

  • Research Article
  • Published:
Quantum Machine Intelligence Aims and scope Submit manuscript

Abstract

Machine learning is a crucial aspect of artificial intelligence. This paper details an approach for quantum Hebbian learning through a batched version of quantum state exponentiation. Here, batches of quantum data are interacted with learning and processing quantum bits (qubits) by a series of elementary controlled partial swap operations, resulting in a Hamiltonian simulation of the statistical ensemble of the data. We decompose this elementary operation into one and two qubit quantum gates from the Clifford+T set and use the decomposition to perform an efficiency analysis. Our construction of quantum Hebbian learning is motivated by extension from the established classical approach, and it can be used to find details about the data such as eigenvalues through phase estimation. This work contributes to the near-term development and implementation of quantum machine learning techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aaronson S (2015) Read the fine print. Nat Phys 11(4):291

    Article  Google Scholar 

  • Amin MH, Andriyash E, Rolfe J, Kulchytskyy B, Melko R (2018) Quantum Boltzmann Machine. Phys Rev X 8(2):021050

    Google Scholar 

  • Barr DS, Mani G (1998) Predictive neural network means and method for selecting a portfolio of securities wherein each network has been trained using data relating to a corresponding security. US Patent 5,761,442

  • Benedetti M, Realpe-Gómez J, Perdomo-Ortiz A (2018) Quantum-assisted Helmholtz machines: a quantum–classical deep learning framework for industrial datasets in near-term devices. Quantum Science and Technology 3(3):034007

    Article  Google Scholar 

  • Benenti G, Strini G (2010) Computing the distance between quantum channels: usefulness of the Fano representation. J Phys B Atomic Mol Phys 43:215508

    Article  Google Scholar 

  • Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S (2017) Quantum machine learning. Nature 549:195

    Article  Google Scholar 

  • Childs AM, Cleve R, Deotto E, Farhi E, Gutmann S, Spielman DA (2003) In: Proceedings of the thirty-fifth annual ACM symposium on Theory of computing. ACM, pp 59–68

  • Childs AM, Cleve R, Deotto E, Farhi E, Gutmann S, Spielman DA (2018) Toward the first quantum simulation with quantum speedup. Proc Natl Acad Sci 115(38):9456–9461

    Article  MathSciNet  Google Scholar 

  • Farhi E, Neven H (2018) arXiv:1802.06002

  • Gilyén A, Lloyd S, Tang E (2017) arXiv:1811.04909

  • Giovannetti V, Lloyd S, Maccone L (2008) Quantum random access memory. Phys Rev Lett 100(16):160501

    Article  MathSciNet  Google Scholar 

  • Gottesman D (2009) arXiv:0904.2557

  • Harrow AW, Hassidim A, Lloyd S (2009) Quantum algorithm for linear systems of equations. Phys Rev Lett 103(15):150502

    Article  MathSciNet  Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley, Hoboken

    Google Scholar 

  • Heyfron L, Campbell ET (2017) arXiv:1712.01557

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci 79(8):2554

    Article  MathSciNet  Google Scholar 

  • Kimmel S, Lin CYY, Low GH, Ozols M, Yoder TJ (2017) Hamiltonian simulation with optimal sample complexity. NPJ Quantum Inf 3(1):13

    Article  Google Scholar 

  • Kitaev AY (1995) arXiv:quant-ph/9511026

  • Lasa R, Berndt D (2007) System for rating quality of online visitors. US Patent App. 11/759,889

  • Liu N, Rebentrost P (2018) Quantum machine learning for quantum anomaly detection. Phys Rev A 97(4):042315

    Article  Google Scholar 

  • Lloyd S, Mohseni M, Rebentrost P (2014) Quantum principal component analysis. Nat Phys 10:631

    Article  Google Scholar 

  • MacKay DJ (2003) Information theory, inference and learning algorithms. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Marvian I, Lloyd S (2016) arXiv:1606.02734

  • McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115

    Article  MathSciNet  Google Scholar 

  • Nielsen MA, Chuang I (2002) Quantum computation and quantum information. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Norris JA (1999) System and method for real time loan approval. US Patent 5,870,721

  • Rebentrost P, Mohseni M, Lloyd S (2014) Quantum support vector machine for big data classification. Phys Rev Lett 113(13):130503

    Article  Google Scholar 

  • Rebentrost P, Bromley TR, Weedbrook C, Lloyd S (2018) Quantum Hopfield neural network. Phys Rev A 98(4):042308

    Article  Google Scholar 

  • Ross NJ, Selinger P (2015) Optimal ancilla-free Clifford+T approximation of z-rotations. Quantum Inf Comput 15(11–12):901

    MathSciNet  Google Scholar 

  • Schuld M, Sinayskiy I, Petruccione F (2014) The quest for a quantum neural network. Quantum Inf Process 13(11):2567

    Article  MathSciNet  Google Scholar 

  • Soklakov AN, Schack R (2006) . Phys Rev A 73(1):012307

    Article  Google Scholar 

  • Storkey AJ, Valabregue R (1999) The basins of attraction of a new Hopfield learning rule. Neural Netw 12(6):869

    Article  Google Scholar 

  • Tang E (2018) arXiv:1807.04271

  • Verdon G, Broughton M, Biamonte J (2017) arXiv:1712.05304

  • Wiebe N, Braun D, Lloyd S (2012) Quantum algorithm for data fitting. Phys Rev Lett 109(5):050505

    Article  Google Scholar 

  • Wiebe N, Kapoor A, Svore KM (2014) arXiv:1412.3489

Download references

Acknowledgements

We acknowledge Seth Lloyd, Iman Marvian, and George Siopsis for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Bromley.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bromley, T.R., Rebentrost, P. Batched quantum state exponentiation and quantum Hebbian learning. Quantum Mach. Intell. 1, 31–40 (2019). https://doi.org/10.1007/s42484-019-00002-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42484-019-00002-9

Keywords

Navigation