Skip to main content
Log in

Response of the clone RRIM 3001 (Hevea brasiliensis) to three ethephon stimulation treatments and the identification of differentially expressed transcription factors for a water-based stimulant

  • Original Paper
  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

Ethylene plays a role of gas hormone generated in response to varied stress in plant cells. In Hevea brasiliensis, periodic ethephon stimulation of tapped trees generates a dilution of the latex, a lower Total Solid Content (TSC) and a lower viscosity, resulting in a longer duration of the latex flow and a higher production of the following tappings. It also increases latex regeneration between two subsequent tappings. These mechanisms induce important changes in the laticifer metabolism and in the cellular genetic expression. Ethephon stimulation has become a major tool for tapping management. However, its excessive use can increase the susceptibility of trees to tapping panel dryness (TPD). A newly formulated ethephon water-based stimulant (RRIM HYDROBESTTM, or RHB) is studied. A field trial was set with the clone RRIM 3001, comparing 4 stimulant treatments: ns = non-stimulated = control, ET = Ethephon 5%, MTX = MORTEX 5%, and RHB = RRIM HYDROBEST™ 5%. The production per tree was higher for MTX than for ns and ET, with RHB intermediate between both groups. The dry cut length (DCL) percentage of RHB was lower than that of ns, ET and MTX. Concerning the sucrose content of the latex measured in high-yielding and low-yielding periods, for the control ns alone, sucrose content in the low-yielding period was higher than that in the high-yielding period. Concerning the RHB treatment, in comparison with the control, 75 differentially expressed transcription factors were found, with most of them members of the ERF family. These results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are not openly available due to reasons of sensitivity and are available from the corresponding author upon reasonable request. Data are located in controlled access data storage at Malaysian Rubber Board.

Abbreviations

CRD:

Completely randomised design

CSD1:

Cu/Zn Superoxide Dismutase 1 (stress-responsive gene)

CSD2:

Cu/Zn Superoxide Dismutase 2 (stress-responsive gene)

DCL:

Dry cut length

DEG:

Differentially expressed gene

DMRT:

Duncan multiple range test

DRC:

Dry rubber content

DREB1A:

Dehydration Response Element B1A (stress-responsive gene)

ET:

Stimulant Ethephon 5%

ERF:

Ethylene response factor

FPKM:

Fragments per kilobase of gene per Million fragments

FSD3:

Iron (Fe) superoxide dismutase 3

HKK:

Hexokinase

KOG:

Eukaryotic orthologous groups

MRB:

Malaysian rubber board

MTX:

Stimulant MORTEX 5% (oil-based)

NR:

Natural rubber

Ns:

Non-stimulated treatment

PPP:

Pentose phosphate pathways

RHB:

Stimulant RRIM HYDROBEST™ 5% (water-based)

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

SR:

Synthetic rubber

SRPP:

Small rubber particle (Hev b 3)

SPS:

Sucrose phosphate synthase

Sus:

Sucrose synthase

TCA:

Trichloroacetic acid

TPD:

Tapping panel dryness

TFs:

Transcription factors

TSC:

Total solid content

References

  1. Cornish K (2017) Alternative natural rubber crops: why should we care? Technol Innov 18(4):244–255. https://doi.org/10.21300/18.4.2017.245

    Article  CAS  Google Scholar 

  2. Cornish K (2001) Biochemistry of natural rubber, a vital raw material, emphasizing biosynthetic rate, molecular weight and compartmentalization, in evolutionarily divergent plant species. Nat Product Rep 18(2):182–189. https://doi.org/10.1039/A902191D

    Article  CAS  Google Scholar 

  3. MRB (2021) Pocket Book 2021. Kuala Lumpur

  4. Husin NMC, Kamarrudin MF (2020) Physiological and productivity impact of mechanical wounding and Mortex stimulation on rubber clones RRIM 2025 and PB 350. J Trop Plant Physiol 12(2):8–22. https://doi.org/10.56999/jtpp.2020.12.2.7

    Article  Google Scholar 

  5. Abdul Ghaffar MA, Jabar S, Ahmad AR (2018) Stimulation practices of Ethephon and Water Based Ethephon Stimulant (WBES) on RRIM 3001 clone. In RRIM 3001 Clone Seminar at Akademi Hevea Malaysia

  6. Chrestin H (1989) Biochemical aspects of bark dryness induced by overstimulation of rubber trees with Ethrel. In: D’Auzac J, Jacob JL, Chrestin H (eds) Physiology of rubber tree latex. CRC Press, Boca Raton, Florida, pp 431–442

    Google Scholar 

  7. Li D, Deng Z, Chen C, Xia Z, Wu M, He P (2010) Chen S (2010) Identification and characterization of genes associated with tapping panel dryness from Hevea brasiliensis latex using suppression subtractive hybridization. BMC Plant Biol 10(1):140. https://doi.org/10.1186/1471-2229-10-140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang Y, Leclercq J, Montoro P (2017) Reactive oxygen species in Hevea brasiliensis latex and relevance to tapping panel dryness. Tree Physiol 37(2):261–269. https://doi.org/10.1093/treephys/tpw106

    Article  CAS  PubMed  Google Scholar 

  9. Yuan K, He J, Hu Y, Feng C, Wang Z (2021) The variation of reactive oxygen species scavenging enzymes and related gene expressions during occurrence and recovery of rubber tree tapping panel dryness. J Rubber Res 24:391–402. https://doi.org/10.1007/s42464-021-00106-7

    Article  CAS  Google Scholar 

  10. Audley BG, Archer BL, Carruthers IB (1976) Metabolism of ethephon (2-chloroethylphosphonic acid) and related compounds in Hevea brasiliensis. Arch Environ Contam Toxicol 4(1):183–200. https://doi.org/10.1007/BF02221023

    Article  CAS  PubMed  Google Scholar 

  11. Chrestin H, Gidrol X, Kush A (1997) Towards a latex molecular diagnostic of yield potential and the genetic engineering of the rubber tree. Euphytica 96(1):77–82. https://doi.org/10.1023/A:1002950300536

    Article  CAS  Google Scholar 

  12. Coupé M, Chrestin H (1989) Physico-chemical and biochemical mechanisms of hormonal (ethylene) stimulation. In: D’Auzac J, Jacob JL, Chrestin H (eds) Physiology of rubber tree latex. CRC Press, Boca Raton, Florida, pp 295–320

    Google Scholar 

  13. Tupý J (1988) Ribosomal and polyadenylated RNA content of rubber tree latex, association with sucrose level and latex pH. Plant Sci 55(2):137–144. https://doi.org/10.1016/0168-9452(88)90169-0

    Article  Google Scholar 

  14. Gidrol X, Chrestin H, Mounoury J, D’Auzac J (1988) Early activation by ethylene of the tonoplast H+–pumping ATPase in the latex from Hevea brasiliensis. Plant Physiol 86(3):899–903. https://doi.org/10.1104/pp.86.3.899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pujade-Renaud V, Clement A, Perrot-Rechenmann C, Prevôt JC, Chrestin H, Jacob JL, Guern J (1994) Ethylene-induced increase in glutamine synthetase activity and mRNA levels in Hevea brasiliensis latex cells. Plant Physiol 105(1):127–132. https://doi.org/10.1104/pp.105.1.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu JP (2016) Molecular mechanism underlying ethylene stimulation of latex production in rubber tree (Hevea brasiliensis). Trees 30:1913–1921. https://doi.org/10.1007/s00468-016-1455-9

    Article  CAS  Google Scholar 

  17. Dusotoit-Coucaud A, Brunel N, Kongsawadworakul P, Viboonjun U, Lacointe A, Julien JL, Chrestin H, Sakr S (2009) Sucrose importation into laticifers of Hevea brasiliensis, in relation to ethylene stimulation of latex production. Ann Bot 104(4):635–647. https://doi.org/10.1093/aob/mcp150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fang P, Long X, Fang Y, Chen H, Yu M (2021) A predominant isoform of fructokinase, HbFRK2, is involved in Hevea brasiliensis (Para rubber tree) latex yield and regeneration. Plant Physiol Biochem 62:211–220. https://doi.org/10.1016/j.plaphy.2021.02.039

    Article  CAS  Google Scholar 

  19. Tupý J (1985) Some aspects of sucrose transport and utilization in latex producing bark of Hevea brasiliensis Müll. Arg Biol Plant 27:51–64. https://doi.org/10.1007/BF02894634

    Article  Google Scholar 

  20. Zhu J, Qi J, Fang Y, Xiao X, Li J, Lan J, Tang C (2018) Characterization of sugar contents and sucrose metabolizing enzymes in developing leaves of Hevea brasiliensis. Front Plant Sci 9:58. https://doi.org/10.3389/fpls.2018.00058

    Article  PubMed  PubMed Central  Google Scholar 

  21. Duangngam O, Desalme D, Thaler P, Kasemsap P, Sathornkich J, Satakhun D, Chayawat C, Angeli N, Chantuma P, Epron D (2020) In situ 13CO2 labelling of rubber trees reveals a seasonal shift in the contribution of the carbon sources involved in latex regeneration. J Exp Bot 71(6):2028–2039. https://doi.org/10.1093/jxb/erz551

    Article  CAS  PubMed  Google Scholar 

  22. Tupý J (1969) Stimulatory effects of 2, 4-dichlorophenoxyacetic acid and of 1-naphthylacetic acid on sucrose level, invertase activity and sucrose utilization in the latex of Hevea brasiliensis. Planta 88(2):144–153. https://doi.org/10.1007/BF01391120

    Article  PubMed  Google Scholar 

  23. Tupý J, Primot L (1982) Sucrose synthetase in the latex of Hevea brasiliensis Müll. Arg J Experimental Botany 33(5):988–995. https://doi.org/10.1093/jxb/33.5.988

    Article  Google Scholar 

  24. Tupý J (1973) Activity of latex invertase and latex production in Hevea brasiliensis Müll. Arg Physiol Vég 11:633–641

    Google Scholar 

  25. D’Auzac J, Jacob JL, Prévôt JC, Clément A, Gallois R, Chrestin H, Lacote R, Pujade-Renaud V, Gohet E (1997) The regulation of cis-polyisoprene production (natural rubber) from Hevea brasiliensis. In: Pandalai SG (ed) Recent research developments in plant physiology. Volume 1. pp 273–332

  26. Xiao X, Tang C, Fang Y, Yang M, Zhou B, Qi J, Zhang Y (2014) Structure and expression profile of the sucrose synthase gene family in the rubber tree: indicative of roles in stress response and sucrose utilization in the laticifers. FEBS J 281(1):291–305. https://doi.org/10.1111/febs.12595

    Article  CAS  PubMed  Google Scholar 

  27. The International Organization for Standardization (2005) Natural rubber latex concentrate determination of dry rubber content (ISO 126:2005)

  28. Scott TA Jr, Melvin EH (1953) Determination of dextran with anthrone. Anal Chem 25(11):1656–1661. https://doi.org/10.1021/ac60083a023

    Article  CAS  Google Scholar 

  29. Ashwell G (1957) Colorimetric analysis of sugars. Methods Enzymol 3:73–105. https://doi.org/10.1016/S0076-6879(57)03350-9

    Article  Google Scholar 

  30. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed July 10, 2019

  31. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tang C, Yang M, Fang Y et al (2016) The rubber tree genome reveals new insights into rubber production and species adaptation. Nat Plants 2:16073. https://doi.org/10.1038/nplants.2016.73

    Article  CAS  PubMed  Google Scholar 

  33. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360. https://doi.org/10.1038/nmeth.3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515. https://doi.org/10.1038/nbt.1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L (2011) Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 12(3):1–14. https://doi.org/10.1186/gb-2011-12-3-r22

    Article  CAS  Google Scholar 

  36. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31(1):46–53. https://doi.org/10.1038/nbt.2450

    Article  CAS  PubMed  Google Scholar 

  37. Li D, Wang X, Deng Z, Liu H, Yang H, He G (2016) Transcriptome analyses reveal molecular mechanism underlying tapping panel dryness of rubber tree (Hevea brasiliensis). Sci Rep 6:23540. https://doi.org/10.1038/srep23540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gohet E, Chantuma P, Lacote R, Obouayeba S, Dian K, Clément-Demange A, Kurnia D, Eschbach JM (2003) Latex clonal typology of Hevea brasiliensis: Physiological modelling of yield potential and clonal response to ethephon stimulation. In: IRRDB Workshop on Exploitation Technology, pp 199–217

  39. D’Auzac J, Bouteau F, Chrestin H, Clément A, Jacob JL, Lacrotte R, Prévôt JC, Pujade-Renaud V, Rona JP (1993) Stress ethylene in Hevea brasiliensis: physiological, cellular and molecular aspects. In: Pech JC, Latché A, Balagué C (eds) Cellular and molecular aspects of the plant hormone ethylene. Current plant science and biotechnology in agriculture, Springer, Dordrecht, pp 205–210. https://doi.org/10.1007/978-94-017-1003-9_47

    Chapter  Google Scholar 

  40. Dusotoit-Coucaud A, Kongsawadworakul P, Maurousset L, Viboonjun U, Brunel N, Pujade-Renaud V, Chrestin H, Sakr S (2010) Ethylene stimulation of latex yield depends on the expression of a sucrose transporter (HbSUT1B) in rubber tree (Hevea brasiliensis). Tree Physiol 30(12):1586–1598. https://doi.org/10.1093/treephys/tpq088

    Article  CAS  PubMed  Google Scholar 

  41. Tang C, Huang D, Yang J, Liu S, Sakr S, Li H, Zhou Y, Qin Y (2010) The sucrose transporter HbSUT3 plays an active role in sucrose loading to laticifer and rubber productivity in exploited trees of Hevea brasiliensis (Para rubber tree). Plant Cell Environ 33(10):1708–1720. https://doi.org/10.1111/j.1365-3040.2010.02175.x

    Article  CAS  PubMed  Google Scholar 

  42. Tungngoen K, Kongsawadworakul P, Viboonjun U, Katsuhara M, Brunel N, Sakr S, Narangajavana J, Chrestin H (2009) Involvement of HbPIP2; 1 and HbTIP1; 1 aquaporins in ethylene stimulation of latex yield through regulation of water exchanges between inner liber and latex cells in Hevea brasiliensis. Plant Physiol 151(2):843–856. https://doi.org/10.1104/pp.109.140228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Putranto RA, Duan C, Kuswanhadi CT, Rio M, Piyatrakul P, Herlinawati E, Pirrello J, Dessailly F, Leclercq J, Bonnot F (2015) Ethylene response factors are controlled by multiple harvesting stresses in Hevea brasiliensis. PLoS ONE 10(4):e0123618. https://doi.org/10.1371/journal.pone.0123618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang Y, Xin L, Pirrello J, Fang Y, Yang J, Qi J, Montoro P, Tang C (2021) Ethylene response factors regulate expression of HbSUT3, the sucrose influx carrier in laticifers of Hevea brasiliensis. Tree Physiol 41(7):1278–1288. https://doi.org/10.1093/treephys/tpaa179

    Article  CAS  PubMed  Google Scholar 

  45. Nan H, Lin YL, Liu J, Huang H, Li W, Gao LZ (2021) Genome-wide analysis of the WRKY transcription factor gene family and their response to salt stress in rubber tree. Tropical Plant Biolology 14(1):22–33. https://doi.org/10.1007/s12042-020-09268-x

    Article  CAS  Google Scholar 

  46. Zhang Q, Zhu J, Ni Y, Cai Y, Zhang Z (2012) Expression profiling of HbWRKY1, an ethephon-induced WRKY gene in latex from Hevea brasiliensis in responding to wounding and drought. Trees 26(2):587–595. https://doi.org/10.1007/s00468-011-0623-1

    Article  CAS  Google Scholar 

  47. Li HL, Qu L, Guo D, Wang Y, Zhu JH, Peng SQ (2020) Histone deacetylase interacts with a WRKY transcription factor to regulate the expression of the small rubber particle protein gene from Hevea brasiliensis. Ind Crops Prod 145:111989. https://doi.org/10.1016/j.indcrop.2019.111989

    Article  CAS  Google Scholar 

  48. Wang Y, Guo D, Li HL, Peng SQ (2013) Characterization of HbWRKY1, a WRKY transcription factor from Hevea brasiliensis that negatively regulates HbSRPP. Plant Physiol Biochem 71:283–289. https://doi.org/10.1016/j.plaphy.2013.07.020

    Article  CAS  PubMed  Google Scholar 

  49. Berthelot K, Lecomte S, Estevez Y, Peruch F (2014) Hevea brasiliensis REF (Hev b 1) and SRPP (Hev b 3): An overview on rubber particle proteins. Biochimie 106:1–9. https://doi.org/10.1016/j.biochi.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  50. Brown D, Feeney M, Ahmadi M, Lonoce C, Sajari R, Di Cola A, Frigerio L (2017) Subcellular localization and interactions among rubber particle proteins from Hevea brasiliensis. J Experimental Botany 68(18):5045–5055. https://doi.org/10.1093/jxb/erx331

    Article  CAS  Google Scholar 

  51. Kang G, Yan D, Chen X, Yang L, Zeng R (2021) HbWRKY82, a novel IIc WRKY transcription factor from Hevea brasiliensis associated with abiotic stress tolerance and leaf senescence in Arabidopsis. Physiol Plant 171(1):151–160. https://doi.org/10.1111/ppl.13238

    Article  CAS  PubMed  Google Scholar 

  52. Cao Y, Zhai J, Wang Q, Yuan H, Huang X (2017) Function of Hevea brasiliensis NAC1 in dehydration-induced laticifer differentiation and latex biosynthesis. Planta 245:31–44. https://doi.org/10.1007/s00425-016-2589-0

    Article  CAS  PubMed  Google Scholar 

  53. Yamaguchi T, Kurihara Y, Makita Y, Okubo-Kurihara E, Kageyama A, Osada E, Shimada S, Tsuchida H, Shimada H, Matsui M (2020) Regulatory potential of bHLH-type transcription factors on the road to rubber biosynthesis in Hevea brasiliensis. Plants 9(6):674. https://doi.org/10.3390/plants9060674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Deng X, Guo D, Yang S, Shi M, Chao J, Li H, Peng S, Tian W (2018) Jasmonate signalling in the regulation of rubber biosynthesis in laticifer cells of rubber tree Hevea brasiliensis. J Experimental Botany 69(15):3559–3571. https://doi.org/10.1093/jxb/ery169

    Article  CAS  Google Scholar 

  55. Duan C, Argout X, Gébelin V, Summo M, Dufayard JF, Leclercq J, Piyatrakul P, Pirrello J, Rio M, Champion A, Montoro P (2013) Identification of the Hevea brasiliensis AP2/ERF superfamily by RNA sequencing. BMC Genomics 14(1):1–22. https://doi.org/10.1186/1471-2164-14-30

    Article  CAS  Google Scholar 

  56. Montoro P, Wu S, Favreau B, Herlinawati E, Labrune C, Martin-Magniette ML, Pointet S, Rio M, Leclercq J, Ismawanto S, Kuswanhadi, (2018) Transcriptome analysis in Hevea brasiliensis latex revealed changes in hormone signalling pathways during ethephon stimulation and consequent tapping panel dryness. Sci Rep 8:8483. https://doi.org/10.1038/s41598-018-26854-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nazri AZ (2020) Transcriptome analyses of tapping panel dryness (TPD) in Hevea brasiliensis treated with latex stimulant RRIM HYDROBESTTM. J Trop Plant Physiol 12(1):13–26. https://doi.org/10.56999/jtpp.2020.12.1.2

    Article  Google Scholar 

  58. Li Y, Yang S, Shi M, Zhang S, Wu S, Chen Y, Li W, Tian WM (2020) HbARF2 and HbARF16.3 function as negative regulators for the radial trunk growth of rubber tree. Industrial Crops Prod 158:112978. https://doi.org/10.1016/j.indcrop.2020.112978

    Article  CAS  Google Scholar 

  59. Han G, Lu C, Guo J, Qiao Z, Sui N, Qiu N, Wang B (2020) C2H2 zinc finger proteins: master regulators of abiotic stress responses in plants. Front Plant Sci 11:115. https://doi.org/10.3389/fpls.2020.00115

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liu D, Yang L, Luo M, Wu Q, Liu S, Liu Y (2017) Molecular cloning and characterization of PtrZPT2-1, a ZPT2 family gene encoding a Cys2/His2-type zinc finger protein from trifoliate orange (Poncirus trifoliata (L.) Raf.) that enhances plant tolerance to multiple abiotic stresses. Plant Sci 263:66–78. https://doi.org/10.1016/j.plantsci.2017.07.012

    Article  CAS  PubMed  Google Scholar 

  61. Zou Z, Yang J (2019) Genomic analysis of Dof transcription factors in Hevea brasiliensis, a rubber-producing tree. Ind Crops Prod 134:271–283. https://doi.org/10.1016/j.indcrop.2019.04.013

    Article  CAS  Google Scholar 

  62. Laosombut T, Arreewichit P, Nirapathpongporn K, Traiperm P, Kongsawadworakul P, Viboonjun U, Narangajavana J (2016) Differential expression of methyl jasmonate-responsive genes correlates with laticifer vessel proliferation in phloem tissue of rubber tree (Hevea brasiliensis). J Plant Growth Regul 35(4):1049–1063. https://doi.org/10.1007/s00344-016-9603-4

    Article  CAS  Google Scholar 

  63. Deng X, Wang J, Li Y, Wu S, Yang S, Chao J, Chen Y, Zhang S, Shi M, Tian W (2018) Comparative transcriptome analysis reveals phytohormone signalings, heat shock module and ROS scavenger mediate the cold-tolerance of rubber tree. Sci Rep 8(1):4931. https://doi.org/10.1038/s41598-018-23094-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Deng X, Wang J, Wang J, Tian W (2018) Two HbHsfA1 and HbHsfB1 genes from the tropical woody plant rubber tree confer cold stress tolerance in Saccharomyces cerevisiae. Braz J Bot 41(3):711–724. https://doi.org/10.1007/s40415-018-0485-5

    Article  Google Scholar 

  65. Wang Y, Zhan DF, Li HL, Guo D, Zhu JH, Peng SQ (2017) Transcriptome-wide identification and characterization of MYB transcription factor genes in the laticifer cells of Hevea brasiliensis. Front Plant Sci 8:1974. https://doi.org/10.3389/fpls.2017.01974

    Article  PubMed  PubMed Central  Google Scholar 

  66. Peng SQ, Wu KX, Huang GX, Chen SC (2011) HbMyb1, a Myb transcription factor from Hevea brasiliensis, suppresses stress induced cell death in transgenic tobacco. Plant Physiol Biochem 49(12):1429–1435. https://doi.org/10.1016/j.plaphy.2011.09.007

    Article  CAS  PubMed  Google Scholar 

  67. Kuruvilla L, Sathik MM, Thomas M, Luke LP, KV S, (2017) Identification and validation of cold responsive microRNAs of Hevea brasiliensis using high throughput sequencing. J Crop Sci Biotechnol 20(5):369–377. https://doi.org/10.1007/s12892-017-0062-0

    Article  Google Scholar 

Download references

Funding

Malaysian Rubber Board, ISTC No. 688, Muhammad Akbar Abdul Ghaffar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Zulhilmi Nazri.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazri, A.Z., Abdul Ghaffar, M.A. Response of the clone RRIM 3001 (Hevea brasiliensis) to three ethephon stimulation treatments and the identification of differentially expressed transcription factors for a water-based stimulant. J Rubber Res 27, 103–114 (2024). https://doi.org/10.1007/s42464-024-00237-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42464-024-00237-7

Keywords

Navigation