Skip to main content
Log in

Effect of Sodium and Potassium Ions on the Flotation of Low-Rank Coal in the Presence of Different Collectors: A Theoretical and Experimental Study

  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

Metal cations have significant effects on the flotation of coal and minerals. In this study, the effects of monovalent cations (Na+ and K+) on the flotation of low-rank coal (LRC) were investigated using flotation and particle–bubble attachment experiments and through X-ray photoelectron spectroscopy (XPS) and molecular dynamics simulations. Oleic acid (OA), methyl linoleate (ML), hexadecyltrimethylammonium chloride (CTAC), ricinoleic acid (RA), and kerosene were used as flotation collectors. The flotation experiments revealed that the flotation yields of LRC improved when OA, ML, RA, CTAC, and kerosene were used in pure deionized water. However, flotation was suppressed for these collectors in the presence of K+ and Na+ ions. In contrast, when using CTAC, the flotation yield increased in the presence of these ions. Specifically, the flotation yield increased from 41.24 to 87.03% when 2.0 kg/t CTAC was used in 10 mmol/L NaCl solution. Particle–bubble adhesion experiments and XPS revealed that the hydrophilic groups of CTAC were adsorbed on the LRC surfaces by electrostatic forces, whereas the oxygen-containing functional groups of OA, ML, and RA formed hydrogen bonds with the LRC surface in pure water. Finally, the simulating result revealed that the hydrophobic ends of the OA, ML, and RA collectors hinder the flotation of LRC by adsorbing monovalent cations, whereas the adsorption of monovalent cations on the hydrophobic end of the cationic surfactant (CTAC) promotes flotation via strong electrostatic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author upon reasonable request.

References

  1. Osman H, Jangam S, Lease J et al (2011) Drying of low-rank coal (LRC)—a review of recent patents and innovations. Drying Technol 29:1763–1783. https://doi.org/10.1080/07373937.2011.616443

    Article  CAS  Google Scholar 

  2. Lee SH, Lee TH, Jeong SM et al (2019) Economic analysis of a 600 mwe ultra supercritical circulating fluidized bed power plant based on coal tax and biomass co-combustion plans. Renew Energy 138:121–127. https://doi.org/10.1016/j.renene.2019.01.074

    Article  Google Scholar 

  3. Wen B, Xia W, Sokolovic JM (2017) Recent advances in effective collectors for enhancing the flotation of low rank/oxidized coals. Powder Technol 319:1–11. https://doi.org/10.1016/j.powtec.2017.06.030

    Article  CAS  Google Scholar 

  4. Xia W, Xie G, Peng Y (2015) Recent Advances in Beneficiation for Low Rank Coals. Powder Technol 277:206–221. https://doi.org/10.1016/j.powtec.2015.03.003

    Article  CAS  Google Scholar 

  5. Zhen K, Zheng C, Li C et al (2018) Wettability and flotation modification of long flame coal with low-temperature pyrolysis. Fuel 227:135–140. https://doi.org/10.1016/j.fuel.2018.04.073

    Article  CAS  Google Scholar 

  6. Hu H, Li M, Li L et al (2020) Improving bubble-particle attachment during the flotation of low rank coal by surface modification. Int J Min Sci Technol 30(2):217–223. https://doi.org/10.1016/j.ijmst.2019.04.001

    Article  CAS  Google Scholar 

  7. Mao Y, Xia W, Peng Y et al (2019) Ultrasonic-assisted flotation of fine coal: a review. Fuel Process Technol 195:106150. https://doi.org/10.1016/j.fuproc.2019.106150

    Article  CAS  Google Scholar 

  8. Tang L, Wang S, Guo J et al (2017) Exploration on the removal mechanism of sulfur ether model compounds for coal by microwave irradiation with peroxyacetic acid. Fuel Process Technol 159:442–447. https://doi.org/10.1016/j.fuproc.2016.12.019

    Article  CAS  Google Scholar 

  9. Yoon R-H (1982) Flotation of coal using micro-bubbles and inorganic salts. Min Congress J 68:76–80

    Google Scholar 

  10. Yoon R, Sabey J (2022) Coal flotation in inorganic salt solutions. Mater Sci Forum:87–114. https://doi.org/10.1201/9780367813185-5

  11. Li C, Somasundaran P (1993) Role of electrical double layer forces and hydrophobicity in coal flotation in sodium chloride solutions. Energy Fuel 7(2):244–248. https://doi.org/10.1021/ef00038a014

    Article  CAS  Google Scholar 

  12. Liu J, Liang J, Feng X et al (2021) Effects of inorganic ions on the transfer of weak organic acids and their salts in electrodialysis process. J Membr Sci 624:119109. https://doi.org/10.1016/j.memsci.2021.119109

    Article  CAS  Google Scholar 

  13. Chen Y, Chen X, Peng Y (2020) The effect of sodium hydrosulfide on molybdenite flotation in seawater and diluted seawater. Miner Eng 158:106589. https://doi.org/10.1016/j.mineng.2020.106589

    Article  CAS  Google Scholar 

  14. Romero CP, Jeldres RI, Quezada GR et al (2018) Zeta potential and viscosity of colloidal silica suspensions: effect of seawater salts, pH, flocculant, and shear rate. Colloids Surf A Physicochem Eng Asp 538:210–218. https://doi.org/10.1016/j.colsurfa.2017.10.080

    Article  CAS  Google Scholar 

  15. Quinn JJ, Kracht W, Gomez CO et al (2007) Comparing the effect of salts and frother (MIBC) on gas dispersion and froth properties. Miner Eng 20(14):1296–1302. https://doi.org/10.1016/j.mineng.2007.07.007

    Article  CAS  Google Scholar 

  16. Klassen VI, Mokrousov VA (1963) An introduction to the theory of flotation. https://www.cs.cmu.edu/~cap/raid/daf/bib/klassen63a.html. Accessed 10 March 2023.

  17. Laskowski J, Firth BA (2003) Coal flotation and fine coal utilisation. Int J Miner Process 70(1):251–252. https://doi.org/10.1016/S0301-7516(03)00004-8

    Article  CAS  Google Scholar 

  18. Harvey PA, Nguyen AV, Evans GM (2002) Influence of electrical double-layer interaction on coal flotation. J Colloid Interface Sci 250(2):337–343. https://doi.org/10.1006/jcis.2002.8367

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Ozdemir O, Taran E, Hampton MA et al (2009) Surface chemistry aspects of coal flotation in bore water. Int J Miner Process 92(3):177–183. https://doi.org/10.1016/j.minpro.2009.04.001

    Article  CAS  Google Scholar 

  20. Peng Y, Zhao S, Bradshaw D (2012) Role of saline water in the selective flotation of fine particles. Water in Mineral Processing - Proceedings of the 1st International Symposium 15:61–71.

  21. Zhang N, Chen X, Nicholson T et al (2019) The effect of saline water on the settling of coal slurry and coal froth. Powder Technol 344:161–168. https://doi.org/10.1016/j.powtec.2018.12.036

    Article  CAS  Google Scholar 

  22. Castro S, Miranda C, Toledo P et al (2013) Effect of frothers on bubble coalescence and foaming in electrolyte solutions and seawater. Int J Miner Process 124:8–14. https://doi.org/10.1016/j.minpro.2013.07.002

    Article  CAS  Google Scholar 

  23. Kurniawan AU, Ozdemir O, Nguyen AV et al (2011) Flotation of coal particles in MgCl2, NaCl, and NaClO3 solutions in the absence and presence of dowfroth 250. Int J Miner Process 98(3–4):137–144. https://doi.org/10.1016/j.minpro.2010.11.003

    Article  CAS  Google Scholar 

  24. Paulson O, Pugh RJ (1996) Flotation of inherently hydrophobic particles in aqueous solutions of inorganic electrolytes. Langmuir 12(20):4808–4813. https://doi.org/10.1021/la960128n

    Article  CAS  Google Scholar 

  25. Suyantara GPW, Hirajima T, Elmahdy AM et al (2016) Effect of kerosene emulsion in MgCl2 solution on the kinetics of bubble interactions with molybdenite and chalcopyrite. Colloids Surf A Physicochem Eng Asp 501:98–113. https://doi.org/10.1016/j.colsurfa.2016.04.039

    Article  CAS  Google Scholar 

  26. An Y, Sun K, Qiu Y et al (2022) Specific cation effect on the flotation of graphite. Minerals 12(9):1070. https://doi.org/10.3390/min12091070

    Article  CAS  ADS  Google Scholar 

  27. Marrucci G, Nicodemo L (1967) Coalescence of gas bubbles in aqueous solutions of inorganic electrolytes. Chem Eng Sci 22(9):1257–1265. https://doi.org/10.1016/0009-2509(67)80190-8

    Article  CAS  Google Scholar 

  28. Lessard RR, Zieminski SA (1971) Bubble coalescence and gas transfer in aqueous electrolytic solutions. Ind Eng Chem Fund 10(2):260–269. https://doi.org/10.1021/i160038a012

    Article  CAS  Google Scholar 

  29. Craig VSJ (2004) Bubble coalescence and specific-ion effects. Curr Opin Colloid Interface Sci 9(1):178–184. https://doi.org/10.1016/j.cocis.2004.06.002

    Article  CAS  Google Scholar 

  30. Hofmeier U, Yaminsky VV, Christenson HK (1995) Observations of solute effects on bubble formation. J Colloid Interface Sci 174(1):199–210. https://doi.org/10.1006/jcis.1995.1383

    Article  CAS  ADS  Google Scholar 

  31. Laskowski JS, Cho YS, Ding K (2003) Effect of frothers on bubble size and foam stability in potash ore flotation systems. Can J Chem Eng 81(1):63–69. https://doi.org/10.1002/cjce.5450810107

    Article  CAS  Google Scholar 

  32. Craig VSJ, Ninham BW, Pashley RM (1993) Effect of electrolytes on bubble coalescence. Nature 364(6435):317–319. https://doi.org/10.1038/364317a0

    Article  CAS  ADS  Google Scholar 

  33. Zhang Y, Zhu H, Zhu J et al (2022) Effect of inorganic cations on enhancing graphite/kerosene adsorption and reducing carbon emission in graphite flotation. Fuel 314:122740. https://doi.org/10.1016/j.fuel.2021.122740

    Article  CAS  Google Scholar 

  34. Firouzi M, Nguyen AV (2014) Effects of monovalent anions and cations on drainage and lifetime of foam films at different interface approach speeds. Adv Powder Technol 25(4):1212–1219. https://doi.org/10.1016/j.apt.2014.06.004

    Article  CAS  Google Scholar 

  35. Wei T, Peng Y, Vink S (2016) The joint action of saline water and flotation reagents in stabilizing froth in coal flotation. Int J Miner Process 148:15–22. https://doi.org/10.1016/j.minpro.2016.01.005

    Article  CAS  Google Scholar 

  36. Wang B, Peng Y (2014) The effect of saline water on mineral flotation – a critical review. Miner Eng 66–68:13–24. https://doi.org/10.1016/j.mineng.2014.04.017

    Article  CAS  Google Scholar 

  37. Bournival G, Zhang F, Ata S (2019) Coal flotation in saline water: effects of electrolytes on interfaces and industrial practice. Miner Process Extr Metall 42:1–21. https://doi.org/10.1080/08827508.2019.1654474

    Article  CAS  Google Scholar 

  38. Jeldres RI, Forbes L, Cisternas LA (2016) Effect of seawater on sulfide ore flotation: a review. Miner Process Extr Metall 37(6):369–384. https://doi.org/10.1080/08827508.2016.1218871

    Article  CAS  Google Scholar 

  39. James RO, Healy TW (1972) Adsorption of hydrolyzable metal ions at the oxide—water interface. I. Co(II) adsorption on SiO2 and TiO2 as model systems. J Colloid Interface Sci 40(1):42–52. https://doi.org/10.1016/0021-9797(72)90172-5

    Article  CAS  ADS  Google Scholar 

  40. Crundwell FK (2016) On the mechanism of the flotation of oxides and silicates. Miner Eng 95:185–196. https://doi.org/10.1016/j.mineng.2016.06.017

    Article  CAS  Google Scholar 

  41. Yuan M, Nie W, Zhou W et al (2020) Determining the effect of the non-ionic surfactant AEO9 on lignite adsorption and wetting via molecular dynamics (MD) simulation and experiment comparisons. Fuel 278:118339. https://doi.org/10.1016/j.fuel.2020.118339

    Article  CAS  Google Scholar 

  42. Jin H, Zhang Y, Dong H et al (2022) Molecular dynamics simulations and experimental study of the effects of an ionic surfactant on the wettability of low-rank coal. Fuel 320:123951. https://doi.org/10.1016/j.fuel.2022.123951

    Article  CAS  Google Scholar 

  43. Zhang L, Sun X, Li B et al (2020) Experimental and molecular dynamics simulation study on the enhancement of low rank coal flotation by mixed collector. Fuel 266:117046. https://doi.org/10.1016/j.fuel.2020.117046

    Article  CAS  Google Scholar 

  44. Li Y, Xia W, Peng Y et al (2020) A novel coal tar-based collector for effective flotation cleaning of low rank coal. J Clean Prod 273:123172. https://doi.org/10.1016/j.jclepro.2020.123172

    Article  CAS  Google Scholar 

  45. You X, He M, Zhang W et al (2018) Molecular dynamics simulations of nonylphenol ethoxylate on the Hatcher model of subbituminous coal surface. Powder Technol 332:323–330. https://doi.org/10.1016/j.powtec.2018.04.004

    Article  CAS  Google Scholar 

  46. Li P (2019) The improvement of addition of inorganic salt on the wettability of coal dust by chemical dust suppressant. AEP 9(6):870–877. https://doi.org/10.12677/AEP.2019.96114

    Article  Google Scholar 

  47. Zhen K, Zhang H (2018) Effect of NaCl on the flotation response of low-rank coal. Energy Sources Part A Recov Util Environ Effects 40(13):1613–1620. https://doi.org/10.1080/15567036.2018.1486482

    Article  MathSciNet  CAS  Google Scholar 

  48. Nguyen A, Schulze HJ (2004) Colloidal science of flotation, Boca Raton, Florida. https://doi.org/10.1201/9781482276411

  49. Pietrzak R, Grzybek T, Wachowska H (2007) XPS study of pyrite-free coals subjected to different oxidizing agents. Fuel 86(16):2616–2624. https://doi.org/10.1016/j.fuel.2007.02.025

    Article  CAS  Google Scholar 

  50. Xia W, Xie G (2014) Changes in the hydrophobicity of anthracite coals before and after high temperature heating process. Powder Technol 264:31–35. https://doi.org/10.1016/j.powtec.2014.05.016

    Article  CAS  Google Scholar 

  51. Zhang R, Xing Y, Xia Y et al (2020) Synergistic adsorption mechanism of anionic and cationic surfactant mixtures on low-rank coal flotation. ACS Omega 5(32):20630–20637. https://doi.org/10.1021/acsomega.0c02948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li B, Liu S, Fan M et al (2019) The effect of ethylene oxide groups in dodecyl ethoxyl ethers on low rank coal flotation: an experimental study and simulation. Powder Technol 344:684–692. https://doi.org/10.1016/j.powtec.2018.12.063

    Article  CAS  Google Scholar 

  53. Harris GH, Diao J, Fuerstenau DW (1995) Coal flotation with nonionic surfactants. Coal Prep 16(3–4):135–147. https://doi.org/10.1080/07349349508905248

    Article  CAS  Google Scholar 

  54. Dey S (2012) Enhancement in hydrophobicity of low rank coal by surfactants — a critical overview. Fuel Process Technol 94(1):151–158. https://doi.org/10.1016/j.fuproc.2011.10.021

    Article  MathSciNet  CAS  Google Scholar 

  55. Jia R, Harris GH, Fuerstenau DW (2000) An improved class of universal collectors for the flotation of oxidized and/or low-rank coal. Int J Miner Process 58(1):99–118. https://doi.org/10.1016/S0301-7516(99)00024-1

    Article  CAS  Google Scholar 

  56. He MR, Zhang W, Cao X et al (2018) Adsorption behavior of surfactant on lignite surface: a comparative experimental and molecular dynamics simulation study. Int J Mol Sci 19:437. https://doi.org/10.3390/ijms19020437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tao C, Feng H, Zhou J et al (2009) Molecular simulation of oxygen adsorption and diffusion in polypropylene. Acta Pnys Chim Sin 25:1373–1378. https://doi.org/10.3866/PKU.WHXB20090719

    Article  CAS  Google Scholar 

  58. Núñez-Rojas E, Domínguez H (2011) Computational studies on the behavior of sodium dodecyl sulfate (SDS) at TiO2(rutile)/water interfaces. J Colloid Interface Sci 364(2):417–427. https://doi.org/10.1016/j.jcis.2011.08.069

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Hu from Shiyanjia Lab (https://www.shiyanjia.com) for support of XPS and FTIR analysis and all the reviewers who participated in the review, as well as MJ Editor (https://www.mjeditor.com) for providing English editing services during the preparation of this manuscript.

Funding

This research was supported by the National Natural Science Foundation of China (No. 52264032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiwei Wang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, R., Wang, S. & Gui, D. Effect of Sodium and Potassium Ions on the Flotation of Low-Rank Coal in the Presence of Different Collectors: A Theoretical and Experimental Study. Mining, Metallurgy & Exploration 41, 363–378 (2024). https://doi.org/10.1007/s42461-024-00927-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-024-00927-1

Keywords

Navigation