Skip to main content

Advertisement

Log in

The Role of Permanent Magnets, Lighting Phosphors, and Nickel-Metal Hydride (NiMH) Batteries as a Future Source of Rare Earth Elements (REEs): Urban Mining Through Circular Economy

  • Review
  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

Rare earth elements (REEs) are key ingredients in many advanced materials used in energy, military, transportation, and communication applications. However, the prevailing geopolitical dynamics and the rising demand for REEs have rendered the reliance on primary REE resources susceptible to future supply disruptions, posing a substantial risk to the availability of these elements for numerous applications. Therefore, it is imperative to undertake substantial initiatives in the extraction of REEs from secondary sources on a large scale to ensure the resilience of the supply chain. Permanent magnets, lighting phosphors, and nickel-metal hydride (NiMH) batteries are among the secondary sources with high potential for sustainable REE extraction. This review assesses the extraction potential of REEs from the aforementioned three secondary sources and their leaching kinetics and thermodynamics aspects. More importantly, state-of-the-art different existing kinetic models employed in rare earth (RE) leaching were well discussed for a better understanding of the REE leaching reactions. Furthermore, the optimized leaching parameters related to this kinetics were described, and various RE recovery methods were comprehensively summarized. These processes facilitate to managing one of the fastest-growing solid waste streams by minimizing environmental impacts and producing critical metals, including REEs via circular economy approaches. The recovery of REEs from secondary sources aligns with numerous United Nations Sustainable Development Goals (SDGs), particularly in the renewable energy sector for climate change mitigation. Consequently, this trash-to-treasure urban mining concept to transforming e-waste into a valuable resource for REE recovery emerges as a pivotal element within the REE industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dushyantha N, Batapola N, Ilankoon IM, Rohitha S, Premasiri R, Abeysinghe B, Ratnayake N, Dissanayake K (2020) The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol Rev 1(122):103521

    Article  Google Scholar 

  2. Batapola NM, Dushyantha NP, Premasiri HM, Abeysinghe AM, Rohitha LP, Ratnayake NP, Dissanayake DM, Ilankoon IM, Dharmaratne PG (2020) A comparison of global rare earth element (REE) resources and their mineralogy with REE prospects in Sri Lanka. J Asian Earth Sci 15(200):104475

    Article  Google Scholar 

  3. Green Car Congress (2021) Roskill: Myanmar crisis set to disrupt rare earth supply availability. https://www.greencarcongress.com/2021/04/20210402-roskillmyanmar.html. Accessed 16 Apr 2021

  4. Balaram V (2019) Geoscience frontiers rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci Front 10:1285–1303

    Article  CAS  Google Scholar 

  5. Lixandru A, Venkatesan P, Jönsson C et al (2017) Identification and recovery of rare-earth permanent magnets from waste electrical and electronic equipment. Waste Manage 68:482–489

    Article  CAS  Google Scholar 

  6. Qiu Y, Suh S (2019) Economic feasibility of recycling rare earth oxides from end-of-life lighting technologies. Resour Conserv Recycl 150:104432

    Article  Google Scholar 

  7. Buechler DT, Zyaykina NN, Spencer CA et al (2020) Comprehensive elemental analysis of consumer electronic devices: rare earth, precious, and critical elements. Waste Manage 103:67–75

    Article  CAS  Google Scholar 

  8. Naumov AV (2008) Review of the world market of rare-earth metals. Russ J Non-Ferrous Metals 49:14–22

    Article  Google Scholar 

  9. Kim J-Y, Kim U-S, Byeon M-S et al (2011) Recovery of cerium from glass polishing slurry. J Rare Earths 29:1075–1078

    Article  CAS  Google Scholar 

  10. Bahaloo-Horeh N, Mousavi SM (2020) Comprehensive characterization and environmental risk assessment of end-of-life automotive catalytic converters to arrange a sustainable roadmap for future recycling practices. J Hazard Mater 400:123186

    Article  CAS  PubMed  Google Scholar 

  11. Das GK, Heng BC, Ng S-C et al (2010) Gadolinium oxide ultranarrow nanorods as multimodal contrast agents for optical and magnetic resonance imaging. Langmuir 26:8959–8965

    Article  CAS  PubMed  Google Scholar 

  12. Koyama S, Suzuki T, Ozawa M (2010) From waste to resource, nuclear rare metals as a dream of modern alchemists. Energy Convers Manag 51:1799–1805

    Article  CAS  Google Scholar 

  13. Kumari A, Sinha MK, Pramanik S, Sahu SK (2018) Recovery of rare earths from spent NdFeB magnets of wind turbine: leaching and kinetic aspects. Waste Manage 75:486–498

    Article  CAS  Google Scholar 

  14. Müller T, Friedrich B (2006) Development of a recycling process for nickel-metal hydride batteries. J Power Sources 158:1498–1509

    Article  Google Scholar 

  15. Lin S-L, Huang K-L, Wang I-C et al (2016) Characterization of spent nickel–metal hydride batteries and a preliminary economic evaluation of the recovery processes. J Air Waste Manage Assoc 66:296–306

    Article  CAS  Google Scholar 

  16. Kim Y, Seo H, Roh Y (2018) Metal recovery from the mobile phone waste by chemical and biological treatments. Minerals 8:8

    Article  ADS  Google Scholar 

  17. Khaliq A, Rhamdhani MA, Brooks G, Masood S (2014) Metal extraction processes for electronic waste and existing industrial routes: a review and Australian perspective. Resources 3:152–179

    Article  Google Scholar 

  18. Forti V, Balde CP, Kuehr R, Bel G (2020) The Global E-waste monitor 2020: quantities, flows and the circular economy potential. https://www.itu.int/en/ITU-D/Environment/Documents/Toolbox/GEM_2020_def.pdf. Accessed 16 Apr 2021

  19. U.S. Geological Survey (2022) Rare earths. https://pubs.usgs.gov/periodicals/mcs2022/mcs2022-rare-earths.pdf. Accessed 13 Jun 2023

  20. U.S. Geological Survey (2023) Rare earths. https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-rare-earths.pdf. Accessed 13 Jun 2023

  21. U.S. Geological Survey (2021) Mineral commodity summaries 2021 : Sand and gravel (Industrial). https://www.usgs.gov/centers/national-minerals-information-center/silica-statistics-and-information. Accessed 13 June 2023

  22. U.S. Geological Survey (2019) Mineral commodity summaries 2019. https://pubs.usgs.gov/publication/70202434. Accessed 15 Jun 2023

  23. Jyothi RK, Thenepalli T, Ahn JW, Parhi PK, Chung KW, Lee JY (2020) Review of rare earth elements recovery from secondary resources for clean energy technologies: Grand opportunities to create wealth from waste. J Clean Prod 10(267):122048

    Article  Google Scholar 

  24. Ilankoon I, Dushyantha NP, Mancheri N et al (2022) Constraints to rare earth elements supply diversification: evidence from an industry survey. J Clean Prod 331:129932

    Article  CAS  Google Scholar 

  25. Lynas Rare Earths (2023) Kalgoorlie rare earths processing facility project FAQs. https://lynasrareearths.com/wpcontent/uploads/2021/12/Lynas-Kalgoorlie-Processing-Facility-FAQs-Dec-2021.pdf. Accessed 15 Jun 2023

  26. Mancheri NA, Sprecher B, Bailey G et al (2019) Effect of Chinese policies on rare earth supply chain resilience. Resour Conserv Recycl 142:101–112

    Article  Google Scholar 

  27. Wood Mackenzie (2023) Rare earths: vital elements of the energy transition. https://www.woodmac.com/news/opinion/rare-earths-vitalelements-of-the-energy-transition/. Accessed 7 Jun 2023

  28. Institute for Energy Research (2020) China’s new export control law. https://www.instituteforenergyresearch.org/internationalissues/chinas-new-export-control-law/#:~:text=China implemented its new Export,Tuesday%2C December 1%2C 2020.&text=That means China now has,shrink%2C their prices will rise. Accessed 16 Apr 2021

  29. Klinger JM (2018) Rare earth frontiers: from terrestrial subsoils to lunar landscapes. Cornell University Press

    Google Scholar 

  30. Kingsnorth DJ (2016) Rare earths: The China conundrum. In: 12th International Rare Earths Conference. Hong Kong, pp 8–10

  31. Alonso E, Wallington T, Sherman A et al (2012) An assessment of the rare earth element content of conventional and electric vehicles. SAE Int J Mater Manuf 5:473–477

    Article  Google Scholar 

  32. Research and Markets (2019) Rare earth elements: The future of the market to 2024-high demand from emerging economies. CisionPR Newswire https://www.prnewswire.com/news-releases/rare-earth-elements-the-future-of-the-market-to-2024%2D%2D-high-demand-fromemerging-economies-300877742.html. Accessed 1 Nov 2020

  33. Arafura Resource Limited (2020) Arafura resource limited. In: Rare earth supply and demand. https://www.arultd.com/products/supplyand-demand.html. Accessed 28 Dec 2020

  34. Arafura Resource Limited (2023) Supply and demand. https://www.arultd.com/products/supply-and-demand.html. Accessed 7 Jun 2023

  35. European Commission (2017) The European economic and social committee and the committee of the regions on the 2017 list of critical raw materials for the EU. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52017DC0490. Accessed 28 Dec 2020

  36. Tracy BS (2020) An overview of rare earth elements and related issues for congress. In: Every CRS report. https://www.everycrsreport.com/reports/R46618.html. Accessed 15 Dec 2020

  37. Dent PC (2012) Rare earth elements and permanent magnets. J Appl Phys 111:07A721

    Article  Google Scholar 

  38. Harris IR, Jewell GW (2012) Rare-earth magnets: properties, processing and applications. In: Functional materials for sustainable energy applications. Elsevier, pp 600–639

    Chapter  Google Scholar 

  39. Liu S (2019) Sm–Co high-temperature permanent magnet materials. Chin Phys B 28:17501

    Article  ADS  CAS  Google Scholar 

  40. Yu K, Wei L, Shen J (2018) Synthesis and luminescent properties of Eu3+/Tb3+ rare earth ions doped Li2SrSiO4 phosphors. J Anal Chromatogr Spectrosc 1:368

    Article  Google Scholar 

  41. Machacek E, Richter JL, Habib K, Klossek P (2015) Recycling of rare earths from fluorescent lamps: value analysis of closing-the-loop under demand and supply uncertainties. Resour Conserv Recycl 104:76–93

    Article  Google Scholar 

  42. Ku AY, Setlur AA, Loudis J (2015) Impact of light emitting diode adoption on rare earth element use in lighting: implications for yttrium, europium, and terbium demand. Electrochem Soc Interface 24:45–49

    CAS  Google Scholar 

  43. Zhao Y, Wang X, Zhang Y et al (2020) Optical temperature sensing of up-conversion luminescent materials: fundamentals and progress. J Alloys Compd 817:152691

    Article  CAS  Google Scholar 

  44. Wang X, Liu Q, Bu Y et al (2015) Optical temperature sensing of rare-earth ion doped phosphors. RSC Adv 5:86219–86236

    Article  ADS  CAS  Google Scholar 

  45. Song X, Chang M-H, Pecht M (2013) Rare-earth elements in lighting and optical applications and their recycling. Jom 65:1276–1282

    Article  Google Scholar 

  46. Heyes AL, Seefeldt S, Feist JP (2006) Two-colour phosphor thermometry for surface temperature measurement. Opt Laser Technol 38:257–265

    Article  ADS  Google Scholar 

  47. Brübach J, Pflitsch C, Dreizler A, Atakan B (2013) On surface temperature measurements with thermographic phosphors: a review. Prog Energy Combust Sci 39:37–60

    Article  Google Scholar 

  48. Connelly MJ (2018) Optical Amplifiers: SOAs. Encyclopedia of modern optics 242. http://lib.ysu.am/disciplines_bk/7f2e7332c265f9ca424ba25cc45fd0c9.pdf. Accessed 15 Dec 2020

  49. Tanabe S (1999) Optical transitions of rare earth ions for amplifiers: how the local structure works in glass. J Non Cryst Solids 259:1–9

    Article  ADS  CAS  Google Scholar 

  50. Slooff LH, Van Blaaderen A, Polman A et al (2002) Rare-earth doped polymers for planar optical amplifiers. J Appl Phys 91:3955–3980

    Article  ADS  CAS  Google Scholar 

  51. Abhilash, Akcil A (2020) Critical and rare earth elements - recovery from secondary resources. https://www.routledge.com/Criticaland-Rare-Earth-Elements-Recovery-from-Secondary-Resources/Abhilash-Akcil/p/book/9780367086473#:~:text=This%20book%20is%20aimed%20to,tailings%2C%20process%20wastes%20and%20residues. Accessed 11 Dec 2021

  52. Salehi H, Maroufi S, Mofarah SS, Nekouei RK, Sahajwalla V (2023) Recovery of rare earth metals from Ni-MH batteries: A comprehensive review. Renew Sust Energ Rev 1(178):113248

    Article  Google Scholar 

  53. Ilankoon I, Ghorbani Y, Chong MN et al (2018) E-waste in the international context–a review of trade flows, regulations, hazards, waste management strategies and technologies for value recovery. Waste Manage 82:258–275

    Article  CAS  Google Scholar 

  54. Deshmane VG, Islam SZ, Bhave RR (2019) Selective recovery of rare earth elements from a wide range of E-waste and process scalability of membrane solvent extraction. Environ Sci Technol 54:550–558

    Article  ADS  PubMed  Google Scholar 

  55. Patil AB, Tarik M, Struis RPWJ, Ludwig C (2021) Exploiting end-of-life lamps fluorescent powder e-waste as a secondary resource for critical rare earth metals. Resour Conserv Recycl 164:105153

    Article  CAS  Google Scholar 

  56. Khanna R, Ellamparuthy G, Cayumil R et al (2018) Concentration of rare earth elements during high temperature pyrolysis of waste printed circuit boards. Waste Manage 78:602–610

    Article  CAS  Google Scholar 

  57. Yoon H-S, Kim C-J, Chung KW et al (2014) Leaching kinetics of neodymium in sulfuric acid from E-scrap of NdFeB permanent magnet. Korean J Chem Eng 31:706–711

    Article  CAS  Google Scholar 

  58. Liu Q, Tu T, Guo H, Cheng H, Wang X (2020) High-efficiency simultaneous extraction of rare earth elements and iron from NdFeB waste by oxalic acid leaching. Journal of Rare Earths 39(3):323–330

    Article  Google Scholar 

  59. Behera SS, Parhi PK (2016) Leaching kinetics study of neodymium from the scrap magnet using acetic acid. Sep Purif Technol 160:59–66

    Article  CAS  Google Scholar 

  60. Akahori T, Miyamoto Y, Saeki T et al (2017) Optimum conditions for extracting rare earth metals from waste magnets by using molten magnesium. J Alloys Compd 703:337–343

    Article  CAS  Google Scholar 

  61. Yang Y, Lan C, Guo L et al (2020) Recovery of rare-earth element from rare-earth permanent magnet waste by electro-refining in molten fluorides. Sep Purif Technol 233:116030

    Article  CAS  Google Scholar 

  62. Yang Y, Lan C, Wang Y et al (2020) Recycling of ultrafine NdFeB waste by the selective precipitation of rare earth and the electrodeposition of iron in hydrofluoric acid. Sep Purif Technol 230:115870

    Article  CAS  Google Scholar 

  63. Liu F, Porvali A, Wang J et al (2020) Recovery and separation of rare earths and boron from spent Nd-Fe-B magnets. Miner Eng 145:106097

    Article  CAS  Google Scholar 

  64. Ni’am AC, Wang Y-F, Chen S-W, You S-J (2019) Recovery of rare earth elements from waste permanent magnet (WPMs) via selective leaching using the Taguchi method. J Taiwan Inst Chem Eng 97:137–145

    Article  Google Scholar 

  65. Pavón S, Fortuny A, Coll MT, Sastre AM (2018) Neodymium recovery from NdFeB magnet wastes using Primene 81R·Cyanex 572 IL by solvent extraction. J Environ Manage 222:359–367

    Article  PubMed  Google Scholar 

  66. Rho B-J, Sun P-P, Cho S-Y (2019) Recovery of neodymium and praseodymium from nitrate-based leachate of permanent magnet by solvent extraction with trioctylphosphine oxide. Sep Purif Technol 1(238):116429

    Google Scholar 

  67. Kim D, Powell LE, Delmau LH, Peterson ES, Herchenroeder J, Bhave RR (2015) Selective extraction of rare earth elements from permanent magnet scraps with membrane solvent extraction. Environ Sci Technol 49(16):9452–9459

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Binnemans K, Jones PT, Blanpain B, Van Gerven T, Yang Y, Walton A, Buchert M (2013) Recycling of rare earths: A critical review. J Clean Prod 15(51):1–22

    Article  Google Scholar 

  69. Swain N, Mishra S (2019) A review on the recovery and separation of rare earths and transition metals from secondary resources. J Clean Prod 20(220):884–898

    Article  Google Scholar 

  70. Tanvar H, Dhawan N (2019) Extraction of rare earth oxides from discarded compact fluorescent lamps. Miner Eng 135:95–104

    Article  CAS  Google Scholar 

  71. Eduafo PM, Mishra B (2018) Leaching kinetics of yttrium and europium oxides from waste phosphor powder. J Sustain Metall 4:437–442

    Article  Google Scholar 

  72. Verma HR, Sahu SK, Meshram P et al (2013) Kinetics of hydrometallurgical extraction of rare earth metals from waste phosphor. Int J Res Eng Technol (IJRET) 2:251–255

    Google Scholar 

  73. Quanyin TAN, Chao D, Jinhui LI (2017) Effects of mechanical activation on the kinetics of terbium leaching from waste phosphors using hydrochloric acid. J Rare Earths 35:398–405

    Article  Google Scholar 

  74. Van Loy S, Binnemans K, Van Gerven T (2017) Recycling of rare earths from lamp phosphor waste: enhanced dissolution of LaPO4:Ce3+, Tb3+ by mechanical activation. J Clean Prod 156:226–234

    Article  Google Scholar 

  75. Liang Y, Liu Y, Lin R et al (2016) Leaching of rare earth elements from waste lamp phosphor mixtures by reduced alkali fusion followed by acid leaching. Hydrometallurgy 163:99–103

    Article  CAS  Google Scholar 

  76. Chunfa L, Zhenyuan LI, Yanliang Z et al (2017) Selective extraction and recovery of rare earth metals from waste fluorescent powder using alkaline roasting-leaching process. J Rare Earths 35:1008–1013

    Article  Google Scholar 

  77. Liu H, Zhang S, Pan D et al (2014) Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution. J Hazard Mater 272:96–101

    Article  CAS  PubMed  Google Scholar 

  78. Tan Q, Deng C, Li J (2016) Innovative application of mechanical activation for rare earth elements recovering: process optimization and mechanism exploration. Sci Rep 6:19961

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tan Q, Deng C, Li J (2017) Enhanced recovery of rare earth elements from waste phosphors by mechanical activation. J Clean Prod 142:2187–2191

    Article  CAS  Google Scholar 

  80. Tunsu C, Petranikova M, Ekberg C, Retegan T (2016) A hydrometallurgical process for the recovery of rare earth elements from fluorescent lamp waste fractions. Sep Purif Technol 161:172–186

    Article  CAS  Google Scholar 

  81. Yurramendi L, Gijsemans L, Forte F et al (2019) Enhancing rare-earth recovery from lamp phosphor waste. Hydrometallurgy 187:38–44

    Article  CAS  Google Scholar 

  82. Yang F, Kubota F, Baba Y et al (2013) Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system. J Hazard Mater 254:79–88

    Article  PubMed  Google Scholar 

  83. Rabah MA (2008) Recyclables recovery of europium and yttrium metals and some salts from spent fluorescent lamps. Waste Manage 28:318–325

    Article  CAS  Google Scholar 

  84. Yang X, Zhang J, Fang X (2014) Rare earth element recycling from waste nickel-metal hydride batteries. J Hazard Mater 279:384–388

    Article  CAS  PubMed  Google Scholar 

  85. Meshram P, Pandey BD, Mankhand TR (2016) Process optimization and kinetics for leaching of rare earth metals from the spent Ni–metal hydride batteries. Waste Manage 51:196–203

    Article  CAS  Google Scholar 

  86. Yun X, Liansheng X, Jiying T et al (2015) Recovery of rare earths from acid leach solutions of spent nickel-metal hydride batteries using solvent extraction. J Rare Earths 33:1348–1354

    Article  Google Scholar 

  87. Yao Y, Farac NF, Azimi G (2018) Supercritical fluid extraction of rare earth elements from nickel metal hydride battery. ACS Sustain Chem Eng 6:1417–1426

    Article  CAS  Google Scholar 

  88. Gasser MS, Aly MI (2013) Separation and recovery of rare earth elements from spent nickel–metal-hydride batteries using synthetic adsorbent. Int J Miner Process 121:31–38

    Article  CAS  Google Scholar 

  89. Tumin VM, Koryakov AG, Nikiforova EP (2013) The main factors of socio-ecological-economic stability and development of industrial enterprises. World Appl Sci J 25:945–949

    Google Scholar 

  90. BIS Research (2023) Black mass recycling: key to achieve UN’s E-waste sustainability goal. https://www.linkedin.com/pulse/blackmass-recycling-key-achieve-uns-e-waste-sustainability/. Accessed 8 Jun 2023

  91. John B, Möller A, Weiser A (2016) Sustainable development and material flows. Sustain Sci 2016:219–230

    Article  Google Scholar 

  92. McLellan BC, Corder GD, Golev A, Ali SH (2014) Sustainability of the rare earths industry. Procedia Environ Sci 1(20):280–287

    Article  Google Scholar 

  93. Dang DH, Thompson KA, Ma L, Nguyen HQ, Luu ST, Duong MT, Kernaghan A (2021) Toward the circular economy of rare earth elements: a review of abundance, extraction, applications, and environmental impacts. Arch Environ Contam Toxicol 81(4):521–530

    Article  CAS  PubMed  Google Scholar 

  94. The United Nations: Sustainable development goals (2018) About the sustainable development goals. https://sdgs.un.org/goals. Accessed 16 Apr 2020

  95. United Nations Economic and Social Council (2023) Progress towards the sustainable development goals: towards a rescue plan for people and planet report of the secretary-general (special edition). https://hlpf.un.org/sites/default/files/2023-04/SDG%20Progress%20Report%20Special%20Edition.pdf. Accessed 8 Jun 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nimila Dushyantha.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dushyantha, N., Kuruppu, G.N., Nanayakkara, C.J. et al. The Role of Permanent Magnets, Lighting Phosphors, and Nickel-Metal Hydride (NiMH) Batteries as a Future Source of Rare Earth Elements (REEs): Urban Mining Through Circular Economy. Mining, Metallurgy & Exploration 41, 321–334 (2024). https://doi.org/10.1007/s42461-023-00904-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-023-00904-0

Keywords

Navigation