Skip to main content
Log in

Equivalence of a Beam on Elastic Foundation and a Beam on Elastic Supports with Transfer Matrix Method

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

In this work, the mechanical equivalence and equivalent accuracy between a beam on elastic foundation (BOEF) and a beam on elastic supports (BOES) are analyzed considering static and dynamic characteristics using the transfer matrix method. The purpose of this paper is to investigate and obtain the critical equivalence condition between the two beam models, so as to facilitate the calculation of two kinds of structures in engineering and research.

Methods

The mathematical models for free vibration, deformation under static concentrated load, and dynamic response under moving load for both the BOEF and the BOES are established separately. The displacement of the two beam models under static load and the natural frequencies of the BOES are determined utilizing the transfer matrix method. Additionally, the partial differential equations of motion for the two beam models under moving load are established. Upon obtaining the ordinary differential equations utilizing Galerkin discretization, the first and second-order dynamic responses are obtained through numerical solutions and are superimposed. The equivalence coefficient for the two beam models is subsequently determined.

Results and Conclusions

The study further analyses the natural frequencies, deformation under static concentrated load, and dynamic response displacement under moving load for various equivalence coefficients across different key physical parameters. After validating the obtained equivalence coefficient with existing literature, the equivalent accuracy for the two beam models is further quantified. When the equivalence coefficient is Keq = 1.2, the natural frequency difference is only one thousandth. Furthermore, this paper establishes the critical equivalence condition that Keq = 10 for the BOEF and the BOES, wherein the natural frequency differential is around 1%. Research has shown that there is no significant difference in deformation under static load and dynamic response under moving load after equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data will be made available on request.

Abbreviations

BOEF:

Beam on elastic foundation

BOES:

Beam on elastic supports

\(x\) :

Coordinate along the beam length

\(z\) :

Coordinate along the beam’s vertical direction

\(t\) :

Time coordinate

\(L\) :

Length of the beams

\(N\) :

Number of beam segments with elastic supports as segmented boundaries

\(l\) :

Elastic foundation with length l is equivalent to an elastic support

\(l_{i}\) :

Length of ith beam

\(k_{{\text{f}}}\) :

Elastic foundation stiffness

\(k_{\text{s}}\) :

Elastic support stiffness

\(w\left( {x,\;t} \right)\) :

Dynamic response displacement under moving load

\(W_{{\text{st}}} \left( x \right)\) :

Deformation displacement under static concentrated load

\(W_{\text{S}}\) :

The displacement of the middle position of the BOEF

\(W_{\text{F}}\) :

The displacement of the middle position of the BOES

\(W_{{\text{mo}}}\) :

Modal function of the beams

\(\rho\) :

Mass density of the beams

\(E\) :

Young’s modulus of the beams

\(b\) :

Width of the cross-section of the beams

\(h\) :

Height of the cross-section of the beams

\(A\) :

Cross-sectional area of the beams

\(I\) :

Moment of inertia of the beams

\(\delta \left( {x - x_{i} } \right)\) :

Dirac function represents the presence of elastic support force at the elastic connection point \(x_{i}\)

\(k_{{\text{s},\;i}}\) :

Stiffness of the ith elastic support

\(F_{{\text{s},\;i}}\) :

Elastic force of the ith elastic support

\(\omega\) :

Natural frequency of the two beam models

\(\omega_{{\text{f},\;1}} ,\;\omega_{{\text{f},\;2}}\) :

First and second order natural frequencies of the BOEF

\(\omega_{{\text{s},\;1}} ,\;\omega_{{\text{s},\;2}}\) :

First and second order natural frequencies of the BOES

\(\lambda ,\;\alpha\) :

Coefficients in the process of solving \(W\)

\({\mathbf{Z}}\) :

State vector of the two beam models in the transfer matrix method

\(W\) :

Displacement in State vector Z, including modal function displacement \(W_{{\text{mo}}}\) in dynamic analysis and deformation displacement \(W_{{\text{st}}}\) in static analysis.

\(\theta\) :

Rotation angle in State vector Z

\(M\) :

Bending moment in State vector Z

\(Q\) :

Shear force in State vector Z

\({\mathbf{C}}\) :

Coefficient vector in the transfer matrix method, containing the coefficient of the modal function \(W_{{\text{mo}}}\), i.e., C1, C2, C3, C4.

\({\mathbf{U}}\) :

Field matrix in the transfer matrix method

\({\mathbf{Z}}_{i}^{\text{L}}\) :

Left endpoint state vector of ith beam segment

\({\mathbf{U}}_{0}\) :

Left endpoint matrix of ith beam segment

\({\mathbf{U}}_{0}^{ - 1}\) :

Inverse of left endpoint matrix \({\mathbf{U}}_{0}\)

\({\mathbf{C}}_{i}^{\text{f}}\) :

Coefficient vector of ith beam segment

\({\mathbf{Z}}_{i}^{\text{R}}\) :

Right endpoint state vector of ith beam segment

\({\mathbf{U}}_{i}^{\text{f}}\) :

Right endpoint matrix of ith beam segment

\({\mathbf{U}}_{i}^{\text{S}}\) :

Segmented node matrix

\({\mathbf{U}}_{{\text{to}}}\) :

Overall transfer matrix

\(u_{s,\;t}\) :

Assumed element symbol in the overall transfer matrix \({\mathbf{U}}_{{\text{to}}}\) in static deformation analysis

\(w_{n} \left( t \right)\) :

Time function of nth order dynamic response

\(W_{{\text{mo},\;n}} \left( x \right)\) :

Model function of nth order dynamic response

\(P\) :

Value of the concentrated static load and moving load

\(v\) :

Velocity of the moving load

\(a,\;k_{1} ,\;k_{2}\) :

Coefficients of the ordinary differential motion equation after Galerkin discretization in dynamic analysis

\(K_{{\text{eq}}}\) :

Equivalence coefficient in this paper

\(K_{\text{v}}\) :

Equivalence coefficient in existing literature [3]

References

  1. Hetenyi M (1974) Beams on elastic foundation. The University of Michigan Press, Michigan

    Google Scholar 

  2. Ellington JP (1957) The beam on discrete elastic supports. Bull Int Rail Congr Assoc 34(12):933–941

    Google Scholar 

  3. Sato M, Kanie S, Mikami T (2008) Mathematical analogy of a beam on elastic supports as a beam on elastic foundation. Appl Math Model 32(5):688–699. https://doi.org/10.1016/j.apm.2007.02.002

    Article  Google Scholar 

  4. Vesić AB (1961) Bending of beams resting on isotropic elastic solid. J Eng Mech Div 87(2):35–53. https://doi.org/10.1061/JMCEA3.0000212

    Article  Google Scholar 

  5. Pavlović MN, Tsikkos S (1982) Beams on quasi-Winkler foundations. Eng Struct 4(2):113–118. https://doi.org/10.1016/0141-0296(82)90045-1

    Article  Google Scholar 

  6. De Rosa MA (1982) Stability and dynamics of beams on Winkler elastic foundations. Earthqu Eng Struct Dyn 18:377–388. https://doi.org/10.1002/eqe.4290180306

    Article  Google Scholar 

  7. Luo TX, Mao QB, Zeng S, Wang KF, Wang BL, Wu JW, Lu Z (2021) Scale effect on the nonlinear vibration of piezoelectric sandwich nanobeams on Winkler foundation. J Vibr Eng Technol 9:1289–1303. https://doi.org/10.1007/s42417-021-00297-8

    Article  Google Scholar 

  8. Bounouara F, Sadoun M, Saleh MMS, Chikh A, Bousahla AA, Kaci A, Bourada F, Tounsi A, Tounsi A (2023) Effect of visco-Pasternak foundation on thermo-mechanical bending response of anisotropic thick laminated composite plates. Steel Comp Struct 47(6):693–707. https://doi.org/10.12989/scs.2023.47.6.693

    Article  Google Scholar 

  9. Bouafia K, Selim MM, Bourada F, Bousahla AA, Bourada M, Tounsi A, Bedia EAA, Tounsi A (2021) Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model. Steel Comp Struct 41(4):487–503. https://doi.org/10.12989/scs.2021.41.4.487

    Article  Google Scholar 

  10. Belabed Z, Tounsi A, Al-Osta MA, Tounsi A, Minh HL (2024) On the elastic stability and free vibration responses of functionally graded porous beams resting on Winkler-Pasternak foundations via finite element computation. Geomech Eng 36(2):183–204. https://doi.org/10.12989/gae.2024.36.2.183

    Article  Google Scholar 

  11. Belbachir N, Bourada F, Bousahla AA, Tounsi A, Al-Osta MA, Ghazwani MH, Alnujaie A, Tounsi A (2023) A refined quasi-3D theory for stability and dynamic investigation of cross-ply laminated composite plates on Winkler-Pasternak foundation. Struct Eng Mech 85(4):433–443. https://doi.org/10.12989/sem.2023.85.4.433

    Article  Google Scholar 

  12. Khorasani M, Lampani L, Tounsi A (2023) A refined vibrational analysis of the FGM porous type beams resting on the silica aerogel substrate. Steel Comp Struct 47(5):633–644. https://doi.org/10.12989/scs.2023.47.5.633

    Article  Google Scholar 

  13. Zhang YW, Ding HX, She GL, Tounsi A (2023) Wave propagation of CNTRC beams resting on elastic foundation based on various higher-order beam theories. Geomech Eng 33(4):381–391. https://doi.org/10.12989/gae.2023.33.4.381

    Article  Google Scholar 

  14. Lafi DE, Bouhadra A, Mamen B, Menasria A, Bourada M, Bousahla AA, Bourada F, Tounsi A, Tounsi A, Yaylaci M (2024) Combined influence of variable distribution models and boundary conditions on the thermodynamic behavior of FG sandwich plates lying on various elastic foundations. Struct Eng Mech 89(2):103–119. https://doi.org/10.12989/sem.2024.89.2.103

    Article  Google Scholar 

  15. Tounsi A, Mostefa AH, Attia A, Bousahla AA, Bourada F, Tounsi A, Al-Osta MA (2023) Free vibration investigation of functionally graded plates with temperaturedependent properties resting on a viscoelastic foundation. Struct Eng Mech 86(1):1–16. https://doi.org/10.12989/sem.2023.86.1.001

    Article  Google Scholar 

  16. Mudhaffar IM, Chikh A, Tounsi A, Al-Osta MA, Al-Zahrani MM, Al-Dulaijan SU (2023) Impact of viscoelastic foundation on bending behavior of FG plate subjected to hygro-thermo-mechanical loads. Eng Mech 86(2):167–180. https://doi.org/10.12989/sem.2023.86.2.167

    Article  Google Scholar 

  17. Tounsi A, Bousahla AA, Tahir SI, Mostefa AH, Bourada F, Al-Osta MA, Tounsi A (2024) Influences of different boundary conditions and hygro-thermal environment on the free vibration responses of FGM sandwich plates resting on viscoelastic foundation. Int J Struct Stab Dyn. https://doi.org/10.1142/S0219455424501177

    Article  Google Scholar 

  18. Zaitoun MW, Chikh A, Tounsi A, Sharif A, Al-Osta MA, Al-Dulaijan SU, Al-Zahrani MM (2023) An efficient computational model for vibration behavior of a functionally graded sandwich plate in a hygrothermal environment with viscoelastic foundation effects. Eng Comp 39:1127–1141. https://doi.org/10.1007/s00366-021-01498-1

    Article  Google Scholar 

  19. Tahir SI, Tounsi A, Chikh A, Al-Ostal MA, Al-Dulaijan SU, Al-Zahrani MM (2022) The effect of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich plates via a simple quasi-3D HSDT. Steel Comp Struct 42(4):501–511. https://doi.org/10.12989/scs.2022.42.4.501

    Article  Google Scholar 

  20. Tounsi A, Mostefa AH, Bousahla AA, Tounsi A, Ghazwani MH, Bourada F, Bouhadra A (2023) Thermodynamical bending analysis of P-FG sandwich plates resting on nonlinear visco-Pasternak’s elastic foundations. Steel Comp Struct 49(3):307–323. https://doi.org/10.12989/scs.2023.49.3.3073

    Article  Google Scholar 

  21. Zhang Y, Dong MS, Ding H, Yang LC (2016) Displacement response of submerged floating tunnel tube due to single moving load. Proced Eng 166:143–151. https://doi.org/10.1016/j.proeng.2016.11.577

    Article  Google Scholar 

  22. Xiang YQ, Yang Y (2017) Spatial dynamic response of submerged floating tunnel under impact load. Mar Struct 53:20–31. https://doi.org/10.1016/j.marstruc.2016.12.009

    Article  Google Scholar 

  23. Lin H, Xiang YQ, Yang YS (2019) Vehicle-tunnel coupled vibration analysis of submerged floating tunnel due to tether parametric excitation. Mar Struct 67:102646. https://doi.org/10.1016/j.marstruc.2019.102646

    Article  Google Scholar 

  24. Vu HV, Ordóñez AM, Karnopp BH (2000) Vibration of a double-beam system. J Sound Vib 229(4):807–822. https://doi.org/10.1006/jsvi.1999.2528

    Article  Google Scholar 

  25. Han F, Dan DH, Cheng W (2018) An exact solution for dynamic analysis of a complex double-beam system. Compos Struct 193:295–305. https://doi.org/10.1016/j.compstruct.2018.03.088

    Article  Google Scholar 

  26. Ghandehari MA, Masoodi AR, Panda SK (2023) Thermal frequency analysis of double CNT-reinforced polymeric straight beam. J Vib Eng Technol. https://doi.org/10.1007/s42417-023-00865-0

    Article  Google Scholar 

  27. He BB, Feng YL (2019) Vibration theoretical analysis of elastically connected multiple beam system under the moving oscillator. Adv Civil Eng. https://doi.org/10.1155/2019/4950841

    Article  Google Scholar 

  28. Dan DH, Han F, Cheng W, Xu B (2019) Unified modal analysis of complex cable systems via extended dynamic stiffness method and enhanced computation. Struct Control Health Monit 26(10):e2435. https://doi.org/10.1002/stc.2435

    Article  Google Scholar 

  29. Han F, Dan DH (2020) Free vibration of the complex cable system—an exact method using symbolic computation. Mech Syst Signal Process 139:106636. https://doi.org/10.1016/j.ymssp.2020.106636

    Article  Google Scholar 

  30. Ji BH, Gao JM, Zhang J (2004) Structural calculation of steel cable-stayed bridges with transfer matrix method. J Southeast Univer Nat Sci Edn 34(6):838–841

    Google Scholar 

  31. Kang HJ, Xie WD, Guo TD (2016) Modeling and parametric analysis of arch bridge with transfer matrix method. Appl Math Model 40(23–24):10578–10595. https://doi.org/10.1016/j.apm.2016.07.009

    Article  MathSciNet  Google Scholar 

  32. Wang ZQ, Kang HJ, Sun CS, Zhao YB, Yi ZP (2014) Modeling and parameter analysis of in-plane dynamics of a suspension bridge with transfer matrix method. Acta Mechanica 225(12):3423–3435. https://doi.org/10.1007/s00707-014-1114-4

    Article  MathSciNet  Google Scholar 

  33. Xia Q, Cheng YY, Zhang J, Zhu FQ (2017) In-service condition assessment of a long-span suspension bridge using temperature-induced strain data. J Bridg Eng 22(3):04016124. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001003

    Article  Google Scholar 

  34. Han F, Deng ZC, Dan DH (2021) Vertical vibrations of suspension bridges: a review and a new method. Arch Comput Meth Eng 28:1591–1610. https://doi.org/10.1007/s11831-020-09430-4

    Article  MathSciNet  Google Scholar 

  35. Belhocine A, Ghazaly NM (2015) Effects of material properties on generation of brake squeal noise using finite element method. Latin Am J Solid Struct 12(8):1432–1447. https://doi.org/10.1590/1679-78251520

    Article  Google Scholar 

  36. Belhocine A, Ghazaly NM (2016) Effects of young’s modulus on disc brake squeal using finite element analysis. Int J Acoust Vib 21(3):292–300. https://doi.org/10.20855/ijav.2016.21.3423

    Article  Google Scholar 

  37. Belhocine A, Afzal A (2020) Finite element modeling of thermomechanical problems under the vehicle braking process. Multisc Multidiscipl Model, Exper Design 3:53–76. https://doi.org/10.1007/s41939-019-00059-w

    Article  Google Scholar 

  38. Stojanovic N, Belhocine A, Abdullah OI, Grujic I (2023) The influence of the brake pad construction on noise formation, people’s health and reduction measures. Environ Sci Pollut Res 30:15352–15363. https://doi.org/10.1007/s11356-022-23291-3

    Article  Google Scholar 

  39. Holzer H (1921) Die Berechnung der Drehschwingungen. Springer, Berlin

    Google Scholar 

  40. Myklestad NO (1944) A new method of calculating natural modes of uncoupled bending vibration of airplane wings and other types of beams. J Aerosp Sci 11:153–162. https://doi.org/10.2514/8.11116

    Article  MathSciNet  Google Scholar 

  41. Pestel EG, Leckie FA (1963) Matrix method in elasto-mechanics. McGraw-Hill Book Compony, New York

    Google Scholar 

  42. Ellakany AM, Elawadly KM, Alhamaky BN (2004) A combined transfer matrix and analogue beam method for free vibration analysis of composite beams. J Sound Vib 277(4–5):765–781. https://doi.org/10.1016/j.jsv.2003.09.052

    Article  Google Scholar 

  43. Attar M (2012) A transfer matrix method for free vibration analysis and crack identification of stepped beams with multiple edge cracks and different boundary conditions. Int J Mech Sci 57:19–33. https://doi.org/10.1016/j.ijmecsci.2012.01.010

    Article  Google Scholar 

  44. Rui XT, Wang GP, Lu YQ, Yun LF (2008) Transfer matrix method for linear multibody system. Multibody Sys Dyn 19(3):179–207. https://doi.org/10.1007/s11044-007-9092-0

    Article  MathSciNet  Google Scholar 

  45. Tu TH, Yu JF, Lien HC, Tsai GL, Wang BP (2008) Free vibration analysis of frames using the transfer dynamic stiffness matrix method. J Vib Acoust 130:024501. https://doi.org/10.1115/1.2827366

    Article  Google Scholar 

  46. Yu DL, Wen JH, Shen HJ, Xiao Y, Wen XS (2012) Propagation of flexural wave in periodic beam on elastic foundations. Phys Lett A 376(4):626–630. https://doi.org/10.1016/j.physleta.2011.11.056

    Article  Google Scholar 

  47. Gao CQ, Xiang YQ, Yang YS, Lin H (2022) Transfer matrix method for analyzing dynamic response of multi-span elastically supported SFT under moving load. Appl Math Model 112:238–261. https://doi.org/10.1016/j.apm.2022.08.004

    Article  MathSciNet  Google Scholar 

  48. Horner GC, Pilkey WD (1978) The Riccati transfer matrix method. ASME J Mech Des 100(2):297–302. https://doi.org/10.1115/1.3453915

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Key Research and Development Program of China (No. 2019YFC1511103); the National Natural Science Foundation Program of China (Nos. 51868007, 12102207, 12272189); the Key Research and Development Program of Guangxi (No. AB22036007); Project of Inner Mongolia Natural Science Foundation through grant (No. 2023MS01014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Xue.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Corresponding field matrix U and left endpoint matrix U0 of static deformation of the BOEF for the modal function Eq. (33)

$${\mathbf{U}}_{{\text{st}}} = \left[ {\begin{array}{*{20}c} {\sin \alpha x\sinh \alpha x} & {\sin \alpha x\cosh \alpha x} & {\cos \alpha x\sinh \alpha x} & {\cos \alpha x\cosh \alpha x} \\ {\alpha \left( {\cos \alpha x\sinh \alpha x + \sin \alpha x\cosh \alpha x} \right)} & {\alpha \left( {\cos \alpha x\cosh \alpha x + \sin \alpha x\sinh \alpha x} \right)} & {\alpha \left( { - \sin \alpha x\sinh \alpha x + \cos \alpha x\cosh \alpha x} \right)} & {\alpha \left( { - \sin \alpha x\cosh \alpha x + \cos \alpha x\sinh \alpha x} \right)} \\ { - 2EI\alpha^{2} \cos \alpha x\cosh \alpha x} & { - 2EI\alpha^{2} \cos \alpha x\sinh \alpha x} & {2EI\alpha^{2} \sin \alpha x\cosh \alpha x} & {2EI\alpha^{2} \sin \alpha x\sinh \alpha x} \\ { - 2EI\alpha^{3} \left( { - \sin \alpha x\cosh \alpha x + \cos \alpha x\sinh \alpha x} \right)} & { - 2EI\alpha^{3} \left( { - \sin \alpha x\sinh \alpha x + \cos \alpha x\cosh \alpha x} \right)} & {2EI\alpha^{3} \left( {\cos \alpha x\cosh \alpha x + \sin \alpha x\sinh \alpha x} \right)} & {2EI\alpha^{3} \left( {\cos \alpha x\sinh \alpha x + \sin \alpha x\cosh \alpha x} \right)} \\ \end{array} } \right]$$
(60)
$${\mathbf{U}} = \left[ {\begin{array}{*{20}c} {{\mathbf{U}}_{{\text{st}}} } & {\mathbf{O}} \\ {\mathbf{O}} & 1 \\ \end{array} } \right]$$
(61)
$${\mathbf{U}}_{0} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 1 & 0 \\ 0 & \alpha & \alpha & 0 & 0 \\ { - 2EI\alpha^{2} } & 0 & 0 & 0 & 0 \\ 0 & { - 2EI\alpha^{3} } & {2EI\alpha^{3} } & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \end{array} } \right]$$
(62)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, K.Z., Xue, N., Ma, W.S. et al. Equivalence of a Beam on Elastic Foundation and a Beam on Elastic Supports with Transfer Matrix Method. J. Vib. Eng. Technol. (2024). https://doi.org/10.1007/s42417-024-01343-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42417-024-01343-x

Keywords

Navigation