Skip to main content
Log in

Generalized foundation Timoshenko beam and its calculating methods

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Due to the discrepancy between slope of deflection curve and rotation due to bending defined in Timoshenko beam theory, the distributed moment proportional to the rotation was extended into the two-parameter foundation, which in essence incorporated the horizontal interface friction produced by the foundation adhesion between the foundation and the beam. Thus, the present foundation can be interpreted by the mutually independent spring to idealize the Winkler foundation, the shear layer to incorporate the foundation cohesion, and the rotation spring to simulate the horizontal interface friction. This foundation was very comprehensive and can be termed as a generalized foundation. Neglecting one of those foundation parameters, the foundation can be degenerated into the classical generalized foundation, two-parameter foundation and Winkler foundation, respectively. Also this foundation provided a mechanical interpretation for understanding the horizontal interface friction produced by the foundation adhesion. Conducting the variational operation, a differential equation of Timoshenko beam on generalized foundation was achieved. To solve the differential equation, an initial parameter solution was deduced to formulate the transfer matrix method. A classical finite element formulation with cubic interpolating functions and a transcendental finite element formulation with the analytical solutions as the shape functions were presented. Four applications were investigated to verify the generalized foundation Timoshenko beam and the related calculating methods. Analytical and numerical results have good agreements with those published in the literature, which demonstrate the accuracy of the present foundation and the related methods. The convergence of the transcendental finite element does not depend on the mesh density of the discrete structures, while the classical finite element fails to achieve such performance. Transfer matrix method and transcendental finite element method provide an efficient and alternative tool for the analysis of elastic foundation beam. Transverse deflections of generalized foundation Timoshenko beam are more sensitive to the compressive stiffness of Winkler foundation than to the stiffness of shear layer and rotation spring of the foundation. Horizontal interface friction due to the foundation adhesion has the coequal influence as the foundation cohesion. It is reasonable to incorporate the horizontal interface friction into the elastic foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Availability of data and material

All data and material were available to readers by rational requests.

References

  1. Bowles, J.E.: Foundation Analysis and Design, 5th edn. McGraw-Hill, New York (1996)

    Google Scholar 

  2. Selvadurai, A.P.S.: Elastic Analysis of a Soil–Structure Interaction. Elsevier Scientific Publishing Co, Amsterdam (1979)

    Google Scholar 

  3. Han, S.M., Benaroya, H., Wei, T.: Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 225(5), 935–988 (1999)

    Article  MATH  Google Scholar 

  4. Arani, A.G., Pourjamshidian, M., Arefi, M., Arani, M.R.G.: Thermal, electrical and mechanical buckling loads of sandwich nano-beams made of FG-CNTRC resting on Pasternak’s foundation based on higher order shear deformation theory. Struct. Eng. Mech. 69(4), 439–455 (2019)

    Google Scholar 

  5. Bensaid, I., Bekhadda, A., Kerboua, B.: Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory. Adv. Nano Res. 6(3), 279–298 (2018)

    Google Scholar 

  6. Kvaternika, S., Filippib, M., Lanca, D., Turkalja, G., Carrera, E.: Comparison of classical and refined beam models applied on isotropic and FG thin-walled beams in nonlinear buckling response. Compos. Struct. 229, 111490 (2019)

    Article  Google Scholar 

  7. Elishakoff, I., Tonzani, G.M., Marzani, A.: Three alternative versions of Bresse–Timoshenko theory for beam on pure Pasternak foundation. Int. J. Mech. Sci. 149, 402–412 (2018)

    Article  MATH  Google Scholar 

  8. Feng, Z.H., Cook, R.D.: Beam elements on two-parameter elastic foundation. J. Eng. Mech. 109(6), 1390–1402 (1983)

    Google Scholar 

  9. Shirima, L.M., Giger, M.W.: Timoshenko beam element resting on two-parameter elastic foundation. J. Eng. Mech. 118(2), 280–295 (1992)

    Google Scholar 

  10. Kerr, A.D.: A study of a new foundation model. Acta Mech. 1(2), 135–147 (1965)

    Article  Google Scholar 

  11. Morfidis, K., Avramidis, I.E.: Bending of beams on three-parameter elastic foundation. Int. J. Solids Struct. 43(2), 357–375 (2006)

    Article  MATH  Google Scholar 

  12. Morfidis, K.: Exact matrices for beams on three-parameter elastic foundation. Comput. Struct. 85(15), 1243–1256 (2007)

    Article  Google Scholar 

  13. Zhang, B.Q., Chen, F.Q., Wang, Q.Y., Lin, L.B.: Analytical model of buried beams on a tensionless foundation subjected to differential settlement. Appl. Math. Model. 87, 269–286 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Essenburg, F.: Shear deformation in beams on elastic foundations. J. Appl. Mech. 29(4), 313–317 (1962)

    Article  MATH  Google Scholar 

  15. Onu, G.: Shear effect in beam finite element on two-parameter elastic foundation. J. Struct. Eng. 126(9), 1104–1107 (2000)

    Article  Google Scholar 

  16. Onu, G.: Finite elements on generalized elastic foundation in Timoshenko beam theory. J. Eng. Mech. 134(9), 763–776 (2008)

    Google Scholar 

  17. Cheng, F.Y., Pantelides, C.P.: Static Timoshenko beam-columns on elastic media. J. Struct. Eng. 114(5), 1152–1172 (1988)

    Article  Google Scholar 

  18. Cheng, F.Y., Pantelides, C.P.: Dynamic Timoshenko beam-columns on elastic media. J. Struct. Eng. 114(7), 1524–1550 (1988)

    Article  Google Scholar 

  19. Aydogan, M.: Stiffness matrix formulation of beams with shear effect on elastic foundation. J. Struct. Eng. 121(9), 1265–1269 (1995)

    Article  Google Scholar 

  20. Kobayashi, H., Sonoda, K.M.: Timoshenko beams on linear viscoelastic foundation. J. Geotech. Eng. 109(6), 832–844 (1983)

    Article  Google Scholar 

  21. Wang, C.M., Lai, H.F., Hu, Z.Z., Huang, M., Mei, Y.H.: Finite difference method for the analysis of double parameter elastic foundation beam and the foundation beam’s features in deformation and contact pressure. J. Hefei Univ. Technol. 27(1), 35–39 (2004). (in Chinese)

    Google Scholar 

  22. Chen, C.N.: Vibration of prismatic beam on an elastic foundation by the differential quadrature element method. Comput. Struct. 77(1), 1–9 (2000)

    Article  Google Scholar 

  23. Malekzadeh, P., Karami, G.: A mixed differential quadrature and finite element free vibration and buckling analysis of thick beams on two-parameter elastic foundations. Appl. Math. Model. 32(7), 1381–1394 (2008)

    Article  MATH  Google Scholar 

  24. Catal, S.: Solution of free vibration equations of beams on elastic soils by using differential transform method. Appl. Math. Model. 32, 1744–1757 (2008)

    Article  MATH  Google Scholar 

  25. Attarnejad, R., Shahba, A., Semnani, S.J.: Application of differential transform in free vibration analysis of Timoshenko beams resting on two-parameter elastic foundation. Arab. J. Sci. Eng. 35(2B), 125–132 (2009)

    Google Scholar 

  26. Xia, G.Y., Li, C.X., Zeng, Q.Y.: Analysis for elastic foundation beam with double shear effect. J. Hunan Univ. 38(11), 19–24 (2011). (in Chinese)

    Google Scholar 

  27. Li, X.J., Xu, F.Y., Zhang, Z.: Symplectic eigenvalue analysis method for bending of beams resting on two-parameter elastic foundations. J. Struct. Eng. 143(9), 04017098 (2017)

    Google Scholar 

  28. Li, X.J., Xu, F.Y., Zhang, Z.: Symplectic method for natural modes of beams resting on elastic foundations. J. Eng. Mech. 144(4), 04018009 (2018)

    Google Scholar 

  29. Wang, C.M., Lam, K.Y., He, X.Q.: Exact solutions for Timoshenko beams on elastic foundations using Green’s functions. Mech. Struct. Mach. 26(1), 101–113 (1998)

    Article  Google Scholar 

  30. Yavari, A., Sarkani, S., Reddy, J.N.: Generalized solutions of beams with jump discontinuities on elastic foundations. Arch. Appl Mech. 71(9), 625–639 (2001)

    Article  MATH  Google Scholar 

  31. Cheng, P., Davila, C., Hou, G.: Static vibration analysis and sensitivity analysis of stepped beams using singularity functions. J. Struct. 5, 1–13 (2014)

    Article  Google Scholar 

  32. Calio, I., Greco, A.: Free vibrations of Timoshenko beam-columns on Pasternak foundations. J. Vib. Control 19(5), 686–696 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Froio, D., Rizzi, E., Simões, F.M.F., Costa, A.P.D.: Universal analytical solution of the steady-state response of an infinite beam on a Pasternak elastic foundation under moving load. Int. J. Solids Struct. 132–133, 245–263 (2018)

    Article  Google Scholar 

  34. De Rosa, M.A.: Free vibration of Timoshenko beam on two-parameter elastic foundation. Comput. Struct. 57(1), 151–156 (1995)

    Article  MATH  Google Scholar 

  35. Bazant, Z.P.: Shear buckling of sandwich fiber composite and lattice columns, bearings and helical springs: paradox resolved. J. Appl. Mech. 70(1), 75–82 (2003)

    Article  MATH  Google Scholar 

  36. Arboleda-Monsalve, L.G., Zapata-Medina, D.G., Aristizabal-Ochoa, J.D.: Timoshenko beam-column with generalized end conditions on elastic foundation: dynamic-stiffness matrix and load vector. J. Sound Vib. 310, 1057–1079 (2008)

    Article  Google Scholar 

  37. Timoshenko, S.P.: On the correction for shear of the differential equation for transverse vibration of prismatic bars. Philos. Mag. 41(6), 744–746 (1921)

    Article  Google Scholar 

  38. Timoshenko, S.P.: On the transverse vibrations of bars of uniform cross section. Philos. Mag. 43(6), 125–131 (1922)

    Article  Google Scholar 

  39. Elishakoff, I., Hache, F., Challamel, N.: Variational derivation of governing differential equations for truncated version of Bresse–Timoshenko beams. J. Sound Vib. 435(24), 409–430 (2018)

    Article  Google Scholar 

  40. Miao, Y., He, H.J., Yang, Q.N., Shi, Y.: Analytical solution considering the tangential effect for an infinite beam on a viscoelastic Pasternak foundation. Appl. Math. Model. 85, 231–243 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Terzi, V.G.: Soil–structure-interaction effects on the flexural vibrations of a cantilever beam. Appl. Math. Model. 97, 138–181 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  42. Adhikari, S.: Exact transcendental stiffness matrices of general beam-columns embedded in elastic mediums. Comput. Struct. 255, 106617 (2021)

    Article  Google Scholar 

  43. Xia, G.Y., Shu, W.Y., Stanciulescu, I.: Analytical and numerical studies on the slope inertia-based Timoshenko beam. J. Sound Vib. 473, 115227 (2020)

    Article  Google Scholar 

  44. Yoo, C.H., Kang, J., Kim, K.: Stresses due to distortion on horizontally curved tub-girders. Eng. Struct. 87, 70–85 (2015)

    Article  Google Scholar 

  45. Wang, Z.Q., Zhao, J.C.: Restrained torsion of thin-walled beams. J. Struct. Eng. 140(11), 04014089 (2014)

    Article  Google Scholar 

  46. Xia, G.Y., Shu, W.Y., Stanciulescu, I.: Efficient analysis of shear wall-frame structural systems. Eng. Comput. 36(6), 2084–2110 (2019)

    Article  Google Scholar 

Download references

Funding

This project is financially supported by the National Natural Science Foundation of China (Grant No. 51278072), the Special Research Fund of Degree and Graduate Education of Hunan Province, China (Grant No. 3020202-012301225), and the Key Research Foundation of Education Bureau of Hunan Province, China (Grant No. 18A131).

Author information

Authors and Affiliations

Authors

Contributions

The research was conducted by the author independently.

Corresponding author

Correspondence to Guiyun Xia.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Consent for publication

No other authors were required to consent for publication.

Ethical approval

No ethics was involved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Coefficient functions for the case of Δ < 0

The spatial wave numbers \(\alpha\) and \(\beta\) are defined as Eq. (7). Coefficient functions are derived as:

$$\begin{aligned} a_{1} \left( x \right) & = ch\left( {\alpha x} \right)\cos \left( {\beta x} \right) \\ & \quad + \frac{{\beta^{2} \left[ {1 + \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right] - \alpha^{2} \left[ {1 - \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right]}}{2\alpha \beta }sh\left( {\alpha x} \right)\sin \left( {\beta x} \right) \\ b_{1} \left( x \right) & = \frac{C}{C + T}\left[ {\frac{{ch\left( {\alpha x} \right)\sin \left( {\beta x} \right)}}{2\beta } + \frac{{sh\left( {\alpha x} \right)\cos \left( {\beta x} \right)}}{2\alpha }} \right] \\ c_{1} \left( x \right) & = \frac{{\beta \left[ {1 + \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right]sh\left( {\alpha x} \right)\cos \left( {\beta x} \right) - \alpha \left[ {1 - \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right]ch\left( {\alpha x} \right)\sin \left( {\beta x} \right)}}{{2\alpha \beta \left( {\alpha^{2} + \beta^{2} } \right)D\frac{C + T}{{C + R}}}} \, \\ d_{1} \left( x \right) & = - \frac{{sh\left( {\alpha x} \right)\sin \left( {\beta x} \right)}}{{2\alpha \beta D\frac{{\left( {C + T} \right)}}{C}}} \\ a_{2} \left( x \right) & = \frac{C + T}{C}\left\{ {\beta^{2} \left[ {1 + \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right]^{2} + \alpha^{2} \left[ {1 - \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right]^{2} } \right\} \\ & \quad \cdot \frac{{\beta sh\left( {\alpha x} \right)\cos \left( {\beta x} \right) - \alpha ch\left( {\alpha x} \right)\sin \left( {\beta x} \right)}}{2\alpha \beta } \\ b_{2} \left( x \right) & = ch\left( {\alpha x} \right)\cos \left( {\beta x} \right) \\ & \quad + \frac{{\alpha^{2} \left[ {1 - \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right] - \beta^{2} \left[ {1 + \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right]}}{2\alpha \beta }sh\left( {\alpha x} \right)\sin \left( {\beta x} \right) \\ c_{2} \left( x \right) & = - \frac{C + R}{C}\frac{{\alpha^{2} \left[ {1 - \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right]^{2} + \beta^{2} \left[ {1 + \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right]^{2} }}{{2\alpha \beta \left( {\alpha^{2} + \beta^{2} } \right)D}} \\ & \quad \cdot sh\left( {\alpha x} \right)\sin \left( {\beta x} \right) \\ d_{2} \left( x \right) & = - \frac{{\alpha \left[ {1 - \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right]ch\left( {\alpha x} \right)\sin \left( {\beta x} \right) + \beta \left[ {1 + \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right]sh\left( {\alpha x} \right)\cos \left( {\beta x} \right)}}{2\alpha \beta D} \\ a_{3} \left( x \right) & = \frac{{D\left( {C + T} \right)\left( {\alpha^{2} + \beta^{2} } \right)}}{{2\alpha \left( {C + R} \right)}}\left\{ {\alpha^{2} \left[ {3 - \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right] - \beta^{2} \left[ {1 + \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right]} \right\} \\ & \quad sh\left( {\alpha x} \right)\cos \left( {\beta x} \right) + \frac{{D\left( {C + T} \right)\left( {\alpha^{2} + \beta^{2} } \right)}}{{2\beta \left( {C + R} \right)}} \\ & \quad \left\{ {\beta^{2} \left[ {3 + \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right] - \alpha^{2} \left[ {1 - \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right]} \right\}ch\left( {\alpha x} \right)\sin \left( {\beta x} \right) \\ b_{3} \left( x \right) & = \frac{{DC\left( {\alpha^{2} + \beta^{2} } \right)^{2} }}{{2\alpha \beta \left( {C + R} \right)}} \cdot sh\left( {\alpha x} \right)\sin \left( {\beta x} \right) \\ c_{3} \left( x \right) & = ch\left( {\alpha x} \right)\cos \left( {\beta x} \right) \\ & \quad + \left[ {\frac{{\beta^{2} \left[ {1 + \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right] - \alpha^{2} \left[ {1 - \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right]}}{2\alpha \beta }} \right]sh\left( {\alpha x} \right)\sin \left( {\beta x} \right) \\ d_{3} \left( x \right) & = \frac{{C\left( {\alpha^{2} + \beta^{2} } \right)}}{{\left( {C + R} \right)}}\left[ {\frac{{sh\left( {\alpha x} \right)\cos \left( {\beta x} \right)}}{2\alpha } - \frac{{ch\left( {\alpha x} \right)\sin \left( {\beta x} \right)}}{2\beta }} \right] \\ a_{4} \left( x \right) & = \frac{{D\left( {C + T} \right)\left( {\alpha^{2} + \beta^{2} } \right)}}{2\alpha \beta C}\left\{ {\beta^{2} \left[ {1 + \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right]^{2} + \alpha^{2} \left[ {1 - \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right]^{2} } \right\} \\ & \quad \cdot sh\left( {\alpha x} \right)\sin \left( {\beta x} \right) \\ b_{4} \left( x \right) & = \left\{ {\beta^{2} \left[ {1 + \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right] - \alpha^{2} \left[ {3 - \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right]} \right\} \cdot \frac{{sh\left( {\alpha x} \right)\cos \left( {\beta x} \right)D}}{2\alpha } \\ & \quad + \left\{ {\beta^{2} \left[ {3 + \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right] - \alpha^{2} \left[ {1 - \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right]} \right\}\frac{{ch\left( {\alpha x} \right)\sin \left( {\beta x} \right)D}}{2\beta } \\ c_{4} \left( x \right) & = \frac{C + R}{{C\left( {\alpha^{2} + \beta^{2} } \right)}}\left[ {\beta^{2} \left[ {1 + \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right]^{2} + \alpha^{2} \left[ {1 - \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right]^{2} } \right] \\ & \quad \left[ {\frac{{sh\left( {\alpha x} \right)\cos \left( {\beta x} \right)}}{2\alpha } + \frac{{ch\left( {\alpha x} \right)\sin \left( {\beta x} \right)}}{2\beta }} \right] \\ d_{4} \left( x \right) & = ch\left( {\alpha x} \right)\cos \left( {\beta x} \right) - \frac{{\beta^{2} \left[ {1 + \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right] - \alpha^{2} \left[ {1 - \frac{D}{C + R}\left( {\alpha^{2} + \beta^{2} } \right)} \right]}}{2\alpha \beta } \\ & \quad sh\left( {\alpha x} \right)\sin \left( {\beta x} \right) \\ \end{aligned}$$
(38)

Appendix B: Coefficient functions for the case of Δ > 0

The spatial wave numbers \(\alpha\) and \(\beta\) are defined as Eq. (14). Coefficient functions are derived as:

$$\begin{aligned} a_{1} \left( x \right) & = ch\left( {\alpha x} \right)ch\left( {\beta x} \right) - \frac{{\beta^{2} \left[ {1 + \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right] + \alpha^{2} \left[ {1 - \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right]}}{2\alpha \beta } \\ & \quad sh\left( {\alpha x} \right)sh\left( {\beta x} \right) \\ b_{1} \left( x \right) & = \frac{C}{C + T}\left[ {\frac{{ch\left( {\alpha x} \right)sh\left( {\beta x} \right)}}{2\beta } + \frac{{sh\left( {\alpha x} \right)ch\left( {\beta x} \right)}}{2\alpha }} \right] \\ c_{1} \left( x \right) & = \frac{{\beta \left[ {1 + \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right]sh\left( {\alpha x} \right)ch\left( {\beta x} \right) - \alpha \left[ {1 - \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right]ch\left( {\alpha x} \right)sh\left( {\beta x} \right)}}{{2\alpha \beta \left( {\alpha^{2} - \beta^{2} } \right)D\frac{C + T}{{C + R}}}} \, \\ d_{1} \left( x \right) & = - \frac{{sh\left( {\alpha x} \right)sh\left( {\beta x} \right)}}{{2\alpha \beta D\frac{{\left( {C + T} \right)}}{C}}} \\ a_{2} \left( x \right) & = \frac{C + T}{C}\left\{ { - \beta^{2} \left[ {1 + \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right]^{2} + \alpha^{2} \left[ {1 - \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right]^{2} } \right\} \\ & \quad \cdot \frac{{\beta sh\left( {\alpha x} \right)ch\left( {\beta x} \right) - \alpha ch\left( {\alpha x} \right)sh\left( {\beta x} \right)}}{2\alpha \beta } \\ b_{2} \left( x \right) & = ch\left( {\alpha x} \right)ch\left( {\beta x} \right) + \frac{{\alpha^{2} \left[ {1 - \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right] + \beta^{2} \left[ {1 + \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right]}}{2\alpha \beta } \\ & \quad sh\left( {\alpha x} \right)sh\left( {\beta x} \right) \\ c_{2} \left( x \right) & = - \frac{C + R}{C}\frac{{\alpha^{2} \left[ {1 - \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right]^{2} - \beta^{2} \left[ {1 + \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right]^{2} }}{{2\alpha \beta \left( {\alpha^{2} - \beta^{2} } \right)D}} \\ & \quad \cdot sh\left( {\alpha x} \right)sh\left( {\beta x} \right) \\ d_{2} \left( x \right) & = - \frac{{\alpha \left[ {1 - \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right]ch\left( {\alpha x} \right)sh\left( {\beta x} \right) + \beta \left[ {1 + \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right]sh\left( {\alpha x} \right)ch\left( {\beta x} \right)}}{2\alpha \beta D} \\ a_{3} \left( x \right) & = \frac{{D\left( {C + T} \right)\left( {\alpha^{2} - \beta^{2} } \right)}}{{2\alpha \left( {C + R} \right)}}\left\{ {\alpha^{2} \left[ {3 - \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right] + \beta^{2} \left[ {1 + \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right]} \right\} \\ & \quad sh\left( {\alpha x} \right)ch\left( {\beta x} \right) + \frac{{D\left( {C + T} \right)\left( {\alpha^{2} - \beta^{2} } \right)}}{{2\beta \left( {C + R} \right)}} \\ & \quad \left\{ { - \beta^{2} \left[ {3 + \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right] - \alpha^{2} \left[ {1 - \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right]} \right\}ch\left( {\alpha x} \right)sh\left( {\beta x} \right) \\ b_{3} \left( x \right) & = \frac{{DC\left( {\alpha^{2} - \beta^{2} } \right)^{2} }}{{2\alpha \beta \left( {C + R} \right)}} \cdot sh\left( {\alpha x} \right)sh\left( {\beta x} \right) \\ c_{3} \left( x \right) & = ch\left( {\alpha x} \right)ch\left( {\beta x} \right) - \left[ {\frac{{\beta^{2} \left[ {1 + \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right] + \alpha^{2} \left[ {1 - \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right]}}{2\alpha \beta }} \right] \\ & \quad sh\left( {\alpha x} \right)sh\left( {\beta x} \right) \\ d_{3} \left( x \right) & = \frac{{C\left( {\alpha^{2} - \beta^{2} } \right)}}{{\left( {C + R} \right)}}\left[ {\frac{{sh\left( {\alpha x} \right)ch\left( {\beta x} \right)}}{2\alpha } - \frac{{ch\left( {\alpha x} \right)sh\left( {\beta x} \right)}}{2\beta }} \right] \\ a_{4} \left( x \right) & = \frac{{D\left( {C + T} \right)\left( {\alpha^{2} - \beta^{2} } \right)}}{2\alpha \beta C}\left\{ { - \beta^{2} \left[ {1 + \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right]^{2} + \alpha^{2} \left[ {1 - \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right]^{2} } \right\} \\ & \quad \cdot sh\left( {\alpha x} \right)sh\left( {\beta x} \right) \\ b_{4} \left( x \right) & = - \left\{ {\beta^{2} \left[ {1 + \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right] + \alpha^{2} \left[ {3 - \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right]} \right\} \\ & \quad \cdot \frac{{sh\left( {\alpha x} \right)ch\left( {\beta x} \right)D}}{2\alpha } - \left\{ {\beta^{2} \left[ {3 + \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right] + \alpha^{2} \left[ {1 - \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right]} \right\} \\ & \quad \frac{{ch\left( {\alpha x} \right)sh\left( {\beta x} \right)D}}{2\beta } \\ c_{4} \left( x \right) & = \frac{C + R}{{C\left( {\alpha^{2} - \beta^{2} } \right)}}\left[ { - \beta^{2} \left[ {1 + \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right]^{2} + \alpha^{2} \left[ {1 - \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right]^{2} } \right] \\ & \quad \left[ {\frac{{sh\left( {\alpha x} \right)ch\left( {\beta x} \right)}}{2\alpha } + \frac{{ch\left( {\alpha x} \right)sh\left( {\beta x} \right)}}{2\beta }} \right] \\ d_{4} \left( x \right) & = ch\left( {\alpha x} \right)ch\left( {\beta x} \right) + \frac{{\beta^{2} \left[ {1 + \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right] + \alpha^{2} \left[ {1 - \frac{D}{C + R}\left( {\alpha^{2} - \beta^{2} } \right)} \right]}}{2\alpha \beta } \\ & \quad sh\left( {\alpha x} \right)sh\left( {\beta x} \right) \\ \end{aligned}$$
(39)

Appendix C: Coefficient functions for the case of Δ = 0

The spatial wave numbers \(\alpha\) and \(\beta\) are defined as Eq. (16). Coefficient functions are derived as:

$$\begin{aligned} a_{1} \left( x \right) & = ch\left( {\alpha x} \right) - \frac{\alpha }{2}\left( {1 - \frac{{\alpha^{2} D}}{C + R}} \right)sh\left( {\alpha x} \right)x \\ b_{1} \left( x \right) & = \frac{C}{C + T}\left[ {\frac{{ch\left( {\alpha x} \right)x}}{2} + \frac{{sh\left( {\alpha x} \right)}}{2\alpha }} \right] \\ c_{1} \left( x \right) & = \frac{C + R}{{D\left( {C + T} \right)}}\frac{{\left( {1 + \frac{{\alpha^{2} D}}{C + R}} \right)sh\left( {\alpha x} \right) - \alpha \left( {1 - \frac{{\alpha^{2} D}}{C + R}} \right)ch\left( {\alpha x} \right)x}}{{2\alpha^{3} }} \\ d_{1} \left( x \right) & = - \frac{{Csh\left( {\alpha x} \right)x}}{{2\alpha D\left( {C + T} \right)}} \\ a_{2} \left( x \right) & = \frac{C + T}{C}\alpha^{2} \left( {1 - \frac{{\alpha^{2} D}}{C + R}} \right)^{2} \frac{{sh\left( {\alpha x} \right) - \alpha ch\left( {\alpha x} \right)x}}{2\alpha } \\ b_{2} \left( x \right) & = ch\left( {\alpha x} \right) + \frac{\alpha }{2}\left( {1 - \frac{{\alpha^{2} D}}{C + R}} \right)sh\left( {\alpha x} \right)x \\ c_{2} \left( x \right) & = - \frac{C + R}{C}\frac{{\left( {1 - \frac{{\alpha^{2} D}}{C + R}} \right)^{2} }}{2\alpha D} \cdot sh\left( {\alpha x} \right)x \\ d_{2} \left( x \right) & = - \frac{{\alpha \left( {1 - \frac{{\alpha^{2} D}}{C + R}} \right)ch\left( {\alpha x} \right)x + \left( {1 + \frac{{\alpha^{2} D}}{C + R}} \right)sh\left( {\alpha x} \right)}}{2\alpha D} \\ a_{3} \left( x \right) & = \frac{{\alpha^{2} D\left( {C + T} \right)}}{{2\left( {C + R} \right)}}\left[ {\alpha \left( {3 - \frac{{\alpha^{2} D}}{C + R}} \right)sh\left( {\alpha x} \right) - \alpha^{2} \left( {1 - \frac{{\alpha^{2} D}}{C + R}} \right)ch\left( {\alpha x} \right)x} \right] \\ b_{3} \left( x \right) & = \frac{{\alpha^{3} DC}}{{2\left( {C + R} \right)}} \cdot sh\left( {\alpha x} \right)x \\ c_{3} \left( x \right) & = ch\left( {\alpha x} \right) - \frac{\alpha }{2}\left( {1 - \frac{{\alpha^{2} D}}{C + R}} \right)sh\left( {\alpha x} \right)x \\ d_{3} \left( x \right) & = \frac{{\alpha^{2} C}}{{\left( {C + R} \right)}}\left[ {\frac{{sh\left( {\alpha x} \right)}}{2\alpha } - \frac{{ch\left( {\alpha x} \right)x}}{2}} \right] \\ a_{4} \left( x \right) & = \frac{{\alpha^{3} D\left( {C + T} \right)}}{2C}\left( {1 - \frac{{\alpha^{2} D}}{C + R}} \right)^{2} sh\left( {\alpha x} \right)x \\ b_{4} \left( x \right) & = - \frac{D}{2}\left[ {\alpha \left( {3 - \frac{{\alpha^{2} D}}{C + R}} \right)sh\left( {\alpha x} \right) + \alpha^{2} \left( {1 - \frac{{\alpha^{2} D}}{C + R}} \right)ch\left( {\alpha x} \right)x} \right] \\ c_{4} \left( x \right) & = \frac{C + R}{C}\left( {1 - \frac{{\alpha^{2} D}}{C + R}} \right)^{2} \left[ {\frac{{sh\left( {\alpha x} \right)}}{2\alpha } + \frac{{ch\left( {\alpha x} \right)x}}{2}} \right] \\ d_{4} \left( x \right) & = ch\left( {\alpha x} \right) + \frac{{\alpha \left( {1 - \frac{{\alpha^{2} D}}{C + R}} \right)}}{2}sh\left( {\alpha x} \right)x \\ \end{aligned}$$
(40)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, G. Generalized foundation Timoshenko beam and its calculating methods. Arch Appl Mech 92, 1015–1036 (2022). https://doi.org/10.1007/s00419-021-02090-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02090-1

Keywords

Navigation