Skip to main content

Advertisement

Log in

Investigations of Vibration Energy Harvester Applying the Triangular Structure with a Tunable Resonant Frequency

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

This paper investigates a vibration energy harvester with a triangular structure for lowfrequency vibrations, focusing on the analysis of nonlinear stiffness and damping characteristics generated by the structure itself for advantageous harvesting performance.

Methods

First, Euler–Lagrange equation of the system is established based on Hamilton’s principle. Then, with the mathematical modeling, the dynamic response of the system is derived using Harmonic Balance Method, which is discussed by numerical analysis. Based on the analytical solutions, the effects on harvesting power changed by different assembly angles, connecting rod length and excitation amplitudes are studied particularly. The advantageous harvesting performance of the proposed system is shown by comparing it with a corresponding conventional linear system.

Results

The result shows that the triangular structure in the system is beneficial for expanding the power output and energy-harvesting bandwidth. Further, the resonant frequency of the system can be tuned to a desired value by adjusting the assembly angle according to the characteristics of surrounding vibration sources.

Conclusions

Therefore, the harvester system in this work is demonstrated to provide an effective method for design to scavenge the low-frequency vibration energy from the ambient environment in engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author upon reasonable request.

References

  1. Huang X, Yang B (2021) Improving energy harvesting from impulsive excitations by a nonlinear tunable bistable energy harvester. ScienceDirect. Mech Syst Signal Process. https://doi.org/10.1016/j.ymssp.2021.107797

    Article  Google Scholar 

  2. Tran N, Ghayesh MH, Arjomandi M (2018) Ambient vibration energy harvesters: a review on nonlinear techniques for performance enhancement. Int J Eng Sci 127:162–185. https://doi.org/10.1016/j.ijengsci.2018.02.003

    Article  MathSciNet  Google Scholar 

  3. Sah DK, Amgoth T (2020) Renewable energy harvesting schemes in wireless sensor networks: a survey. Inf Fusion. https://doi.org/10.1016/j.inffus.2020.07.005

    Article  Google Scholar 

  4. Kausar A, Reza AW, Saleh MU et al (2014) Energizing wireless sensor networks by energy harvesting systems: Scopes, challenges and approaches. Renew Sustain Energy Rev 38:973–989. https://doi.org/10.1016/j.rser.2014.07.035

    Article  Google Scholar 

  5. Fan KQ, Zhang YW, Liu HY et al (2019) A nonlinear two-degree-of-freedom electromagnetic energy harvester for ultra-low frequency vibrations and human body motions. Renew Energy 138:292–302. https://doi.org/10.1016/j.renene.2019.01.105

    Article  Google Scholar 

  6. Zorlu Z, Külah H (2013) A MEMS-based energy harvester for generating energy from non-resonant environmental vibrations. Sens Actuat A 202:124–134. https://doi.org/10.1016/j.sna.2013.01.032

    Article  CAS  Google Scholar 

  7. Fan K, Chang J, Pedrycz W et al (2015) A nonlinear piezoelectric energy harvester for various mechanical motions. Appl Phys Lett 106(22):094102. https://doi.org/10.1063/1.4922212

    Article  CAS  Google Scholar 

  8. Liu W, Liu C, Ren B et al (2016) Bandwidth increasing mechanism by introducing a curve fixture to the cantilever generator. Appl Phys Lett 109(4):18–1302. https://doi.org/10.1063/1.4960147

    Article  MathSciNet  CAS  Google Scholar 

  9. Fan K, Liu S, Liu H et al (2018) Scavenging energy from ultra-low frequency mechanical excitations through a bi-directional hybrid energy harvester. Appl Energy 216:8–20. https://doi.org/10.1016/j.apenergy.2018.02.086

    Article  ADS  Google Scholar 

  10. Tang L, Yang Y, Soh CK (2012) Improving functionality of vibration energy harvesters using magnets. J Intell Mater Syst Struct 13:1433–1449. https://doi.org/10.1177/1045389X12443016

    Article  Google Scholar 

  11. Zhang H, Corr LR, Ma T (2018) Issues in vibration energy harvesting. J Sound Vib 421:79–90. https://doi.org/10.1016/j.jsv.2018.01.057

    Article  ADS  Google Scholar 

  12. Staaf LGH, Smith AD, Lundgren P et al (2018) Effective piezoelectric energy harvesting with bandwidth enhancement by assymetry augmented self-tuning of conjoined cantilevers. Int J Mech Sci 150:1–11. https://doi.org/10.1016/j.ijmecsci.2018.09.050

    Article  Google Scholar 

  13. Wang DF, Zhu YF, Yang X et al (2018) A ball-impact piezoelectric converter wrapped by copper coils. IEEE Trans Nanotechnol 17:723–726. https://doi.org/10.1109/tnano.2018.2823342

    Article  ADS  CAS  Google Scholar 

  14. Lai SK, Wang C, Zhang LH (2019) A nonlinear multi-stable piezomagnetoelastic harvester array for low-intensity, low-frequency, and broadband vibrations. Mech Syst Signal Process 122:87–102. https://doi.org/10.1016/j.ymssp.2018.12.020

    Article  ADS  Google Scholar 

  15. Zhao D, Liu SG, Xu QT et al (2018) Theoretical modeling and analysis of a 2-degree-of-freedom hybrid piezoelectric-electromagnetic vibration energy harvester with a driven beam. J Intell Mater Syst Struct 29:2465–2476. https://doi.org/10.1177/1045389x18770870

    Article  Google Scholar 

  16. Rajarathinam M, Ali SF (2018) Energy generation in a hybrid harvester under harmonic excitation. Energy Convers Manag 155:10–19. https://doi.org/10.1016/j.enconman.2017.10.054

    Article  Google Scholar 

  17. Fan K, Tan Q, Zhang Y et al (2018) A monostable piezoelectric energy harvester for broadband low-level excitations. Appl Phys Lett 112(12):1239011–1239015. https://doi.org/10.1063/1.5022599

    Article  CAS  Google Scholar 

  18. Yang K, Qiu T, Wang JL et al (2020) Magnet-induced monostable nonlinearity for improving the VIV-galloping-coupled wind energy harvesting using combined cross-sectioned bluff body. Smart Mater Struct. https://doi.org/10.1088/1361-665X/ab874c

    Article  Google Scholar 

  19. Zhang XT, Tian XL, Xiao LF et al (2018) Application of an adaptive bistable power capture mechanism to a point absorber wave energy converter. Appl Energy 228:450–467. https://doi.org/10.1016/j.apenergy.2018.06.100

    Article  ADS  Google Scholar 

  20. Yi SH, He XQ, Lu J (2020) Improving bistable properties of metallic shells using a nanostructuring technique. Thin-Walled Struct. https://doi.org/10.1016/j.tws.2019.106444

    Article  Google Scholar 

  21. Yao MH, Ma L, Zhang W (2018) Study on power generations and dynamic responses of the bistable straight beam and the bistable L-shaped beam. Sci China Technol Sci 61:1404–1416. https://doi.org/10.1007/s11431-017-9179-0

    Article  ADS  Google Scholar 

  22. Huang XB (2021) Stochastic resonance in a piecewise bistable energy harvesting model driven by harmonic excitation and additive Gaussian white noise. Appl Math Model 90:505–526. https://doi.org/10.1016/j.apm.2020.09.023

    Article  MathSciNet  Google Scholar 

  23. Lai ZH, Liu JS, Zhang HT et al (2019) Multi-parameter-adjusting stochastic resonance in a standard tri-stable system and its application in incipient fault diagnosis. Nonlinear Dyn 96:2069–2085. https://doi.org/10.1007/s11071-019-04906-w

    Article  Google Scholar 

  24. Kuang Y, Zhu M (2019) Parametrically excited nonlinear magnetic rolling pendulum for broadband energy harvesting. Appl Phys Lett. https://doi.org/10.1063/1.5097552

    Article  Google Scholar 

  25. Thomson G, Lai Z, Val DV et al (2019) Advantages of nonlinear energy harvesting with dielectric elastomers. J Sound Vib 442:167–182. https://doi.org/10.1016/j.jsv.2018.10.066

    Article  ADS  Google Scholar 

  26. Lenz WB, Ribeiro MA, Rocha RT et al (2021) Numerical simulations and control of offshore energy harvesting using piezoelectric materials in a portal frame structure. Shock Vib. https://doi.org/10.1155/2021/6651999

    Article  Google Scholar 

  27. Liu YQ, Xu LL, Song CF et al (2019) Dynamic characteristics of a quasi-zero stiffness vibration isolator with nonlinear stiffness and damping. Arch Appl Mech 89:1743–1759. https://doi.org/10.1007/s00419-019-01541-0

    Article  Google Scholar 

  28. Shahraeeni M, Sorokin V, Mace B et al (2022) Effect of damping nonlinearity on the dynamics and performance of a quasi-zero-stiffness vibration isolator. J Sound Vib. https://doi.org/10.1016/j.jsv.2022.116822

    Article  Google Scholar 

  29. Zhang A, Sorokin V, Li H (2021) Energy harvesting using a novel autoparametric pendulum absorber-harvester. J Sound Vib. https://doi.org/10.1016/j.jsv.2021.116014

    Article  Google Scholar 

  30. Le TD, Ahn KK (2011) A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat. J Sound Vib 330(26):6311–6335. https://doi.org/10.1016/j.jsv.2011.07.039

    Article  ADS  Google Scholar 

  31. Sun X, Jing X (2016) A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band. Mech Syst Signal Process 80:166–188. https://doi.org/10.1016/j.ymssp.2016.04.011

    Article  ADS  Google Scholar 

  32. Zhang Y, Wang T, Zhang A et al (2016) Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency. Rev Sci Instrum 87(12):1251. https://doi.org/10.1063/1.4968811

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China [51905081], Natural Science Foundation of Hebei Province [E2019501117], the Fundamental Research Funds for the Central Universities [N2223028], and China Scholarship Council [202106085007].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaozhe Chen.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 1, 2, and 3.

Table 1 The structure parameters of the proposed system
Table 2 The motion and variables of the proposed system
Table 3 The structural parameters of the corresponding conventional linear system

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Jiao, Z. & Shi, J. Investigations of Vibration Energy Harvester Applying the Triangular Structure with a Tunable Resonant Frequency. J. Vib. Eng. Technol. 12, 2043–2053 (2024). https://doi.org/10.1007/s42417-023-00963-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-023-00963-z

Keywords

Navigation