Skip to main content

Advertisement

Log in

Multi-objective Design Optimization of Structural Geometric Nonlinearities for Response Attenuation of VLBI Antennae Subject to Aerodynamic Turbulence

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Background

Very-long-baseline interferometry (VLBI) is a technique employed in radio astronomy where a signal from a planetary radio source is collected on earth at multiple radio antennae. Working in a network, the time difference of the radio signal reception by the antennae is employed to achieve an effective aperture allowing for the development of a significantly high-resolution images of the space. However, the signal clarity of each individual antenna is dependent on its structural response under environmental conditions. This paper proposes a design optimization framework for VLBI antennae for their performance maximization under aerodynamic gust employing structural geometric nonlinearities.

Purpose

The dynamic aeroelastic response of the antenna is attenuated by optimizing actuation length changes in active structural elements to improve the pointing accuracy of the VLBI antenna under wind gust loads. No framework currently exists in the open literature that leverages the principles of tensegrity structures for vibration attenuation of VLBI antenna using control actuations, therefore, the need for such a framework has been established to design high-performance VLBI ground stations.

Methods

Dynamic aeroelastic gust analysis is performed considering the Power Spectral Density (PSD) with the Davenport spectrum (DS) statistical model and Tuned Discrete Gust analysis with a One-Minus Cosine gust profile. Analyses are performed for two different operating conditions using time-consistent loads (TCL) and time-consistent displacements (TCD).

Additionally, the effect of a varying number of active elements for control actuations is analyzed in the boomarm subsystem of the VLBI antenna while minimizing both the pointing error and total strain energy using an optimization framework employing a Multi-Objective Genetic Algorithm (MOGA).

Results

A case study was presented to showcase the proposed framework. A reduction of 82.6% with a total strain energy increase of 292.5% was obtained for the primary operating case under PSD gust excitation. On the other hand, at the increased mean wind speeds of the secondary operating case, the developed design algorithm was able to reduce the total pointing error by 80.9% but with a total strain energy increase of 825.3%. Similarly, for TDG analysis with the OMC excitation profile the optimization algorithm reduced the total pointing error by 51.6% with a TSE increase of 2098.1% and 80.5% with a TSE increase of 48.7% for the primary and secondary operating conditions, respectively, when compared to the uncontrolled response.

Conclusion

It is found that in all subcases analyzed the developed optimization framework successfully found the best response of the antenna using the utopian point method. These results confirm the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Chen Z, Zheng W (2020) Chinese VLBI Network and e-VLBI technology applications in chinese lunar exploration program. In: Chinese Academy of Sciences et al. (Eds) China’s e-Science Blue Book 2020, Springer, Singapore, pp 169–190. https://doi.org/10.1007/978-981-15-8342-1_9

  2. Giovannini G, Cotton WD, Feretti L, Lara L, Venturi T (2001) VLBI observations of a complete sample of radio galaxies: 10 years later. Astrophys J 552:508–526. https://doi.org/10.1086/320581

    Article  Google Scholar 

  3. Brunthaler A, Reid MJ, Menten KM, Zheng XW, Bartkiewicz A, Choi YK, Dame T, Hachisuka K, Immer K, Moellenbrock G, Moscadelli L, Rygl KLJ, Sanna A, Sato M, Wu Y, Xu Y, Zhang B (2011) The bar and spiral structure legacy (BeSSeL) survey: mapping the milky way with VLBI astrometry. Astron Nachr 332:461–466. https://doi.org/10.1002/asna.201111560

    Article  Google Scholar 

  4. Hobiger T, Kondo T, Schuh H (2006) Very long baseline interferometry as a tool to probe the ionosphere. Radio Sci 41:1–10. https://doi.org/10.1029/2005RS003297

    Article  Google Scholar 

  5. Gawronski W, Souccar K (2004) Control systems of the large millimeter telescope. Astron Struct Mech Technol. https://doi.org/10.1117/12.552954

    Article  Google Scholar 

  6. Gawronski W (2001) Antenna control systems: from PI to H. IEEE Antennas Propag Mag 43:52–60. https://doi.org/10.1109/74.920018

    Article  Google Scholar 

  7. Gawronski W, Bienkiewicz B (1992) Pointing-error simulations of the DSS-133 antenna due to wind disturbances. The Telecommunications and Data Acquisition Report, Document ID: 19920015068

  8. Massoudi M (1978) Tracking Error of 100-m antenna due to wind gust. The Deep Space Network, Document ID: 19790007845

  9. Gawronski W (2004) Modeling wind-gust disturbances for the analysis of antenna pointing accuracy. IEEE Antennas Propag Mag 46:50–58. https://doi.org/10.1109/MAP.2004.1296144

    Article  Google Scholar 

  10. Liu Y, Qian HL, Fan F (2017) Reflector wind load characteristics of the large all-movable antenna and its effect on reflector surface precision. Adv Steel Construct 13:1–29. https://doi.org/10.18057/IJASC.2016.12.4.2

    Article  Google Scholar 

  11. Yuan X, Liang X, Li A (2016) Shape and force control of prestressed cable-strut structures based on nonlinear force method. Adv Struct Eng 19:1917–1926. https://doi.org/10.1177/1369433216652411

    Article  Google Scholar 

  12. Wang Y, Senatore G (2020) Extended integrated force method for the analysis of prestress-stable statically and kinematically indeterminate structures. Int J Solids Struct 202:798–815. https://doi.org/10.1016/j.ijsolstr.2020.05.029

    Article  Google Scholar 

  13. Senatore G, Reksowardojo AP (2020) Force and shape control strategies for minimum energy adaptive structures. Front Built Environ. https://doi.org/10.3389/fbuil.2020.00105

    Article  Google Scholar 

  14. Reksowardojo AP, Senatore G (2020) A proof of equivalence of two force methods for active structural control. Mech Res Commun. https://doi.org/10.1016/j.mechrescom.2019.103465

    Article  Google Scholar 

  15. Senatore G, Duffour P, Winslow P (2019) Synthesis of minimum energy adaptive structures. Struct Multidiscip Optim 60:849–877. https://doi.org/10.1007/s00158-019-02224-8

    Article  MathSciNet  Google Scholar 

  16. Reksowardojo AP, Senatore G, Smith IFC (2020) Design of Structures That Adapt to Loads through Large Shape Changes. J Struct Eng 146:04020068. https://doi.org/10.1061/(asce)st.1943-541x.0002604

    Article  Google Scholar 

  17. Xiaodong F (2017) Dynamic response and vibration control of a planar tensegrity beam under El centro seismic excitation. J Aerosp Eng Mech 1:73–82. https://doi.org/10.36959/422/428

    Article  Google Scholar 

  18. Rasool M, Singha MK (2020) Aeroelastic analysis of pre-stressed variable stiffness composite panels. J Vibr Control 26:724–734. https://doi.org/10.1177/1077546319889865

    Article  MathSciNet  Google Scholar 

  19. Bel Hadj Ali N, Rhode-Barbarigos L, Pascual Albi AA, Smith IFC (2010) Design optimization and dynamic analysis of a tensegrity-based footbridge. Eng Struct 32:3650–3659. https://doi.org/10.1016/J.ENGSTRUCT.2010.08.009

    Article  Google Scholar 

  20. Taylor JR (2002) Genetic optimization of a tensegrity structure. Research Reports: 2001 NASA/ASEE Summer Faculty Fellowship Program; p. L-1 - L-5; NASA/CR-2002-211840

  21. Ashwear N, Eriksson A (2017) Vibration health monitoring for tensegrity structures. Mech Syst Signal Process 85:625–637. https://doi.org/10.1016/j.ymssp.2016.08.039

    Article  Google Scholar 

  22. Giurgiutiu V (2014) Structural health monitoring with piezoelectric wafer active sensors. Academic Press. https://doi.org/10.1016/B978-0-12-418691-0.00003-4

    Article  Google Scholar 

  23. Hu W-H, Tang D-H, Teng J, Said S, Rohrmann RG (2018) Structural health monitoring of a prestressed concrete bridge based on statistical pattern recognition of continuous dynamic measurements over 14 years. Sensors 18:4117. https://doi.org/10.3390/s18124117

    Article  Google Scholar 

  24. Suwała G, Knap L, Holnicki-Szulc J (2016) Prestressing for reduction of local vibrations in a rotorcraft. Eng Trans 64:367–380

    Google Scholar 

  25. Amendola A, Krushynska A, Daraio C, Pugno NM, Fraternali F (2018) Tuning frequency band gaps of tensegrity mass-spring chains with local and global prestress. Int J Solids Struct 155:47–56. https://doi.org/10.1016/J.IJSOLSTR.2018.07.002

    Article  Google Scholar 

  26. Pal RK, Ruzzene M, Rimoli JJ (2018) Tunable wave propagation by varying prestrain in tensegrity-based periodic media. Extreme Mech Lett 22:149–156. https://doi.org/10.1016/J.EML.2018.06.005

    Article  Google Scholar 

  27. Kalha NB, Moussa B, Pons JC (2000) Nonlinear dynamic analysis of tensegrity systems. J Int Assoc Shell Spatial Struct 41:49–58

    Google Scholar 

  28. Tibert G (2002) Deployable tensegrity structures for space applications

  29. Gilewski W, Kłosowska J, Obara P (2015) Applications of tensegrity structures in civil engineering. Procedia Eng 111:242–248. https://doi.org/10.1016/j.proeng.2015.07.084

    Article  Google Scholar 

  30. Furuya H (1992) Concept of deployable tensegrity structures in space application. Int J Space Struct. https://doi.org/10.1177/026635119200700207

    Article  Google Scholar 

  31. Wang Y, Xu X (2019) Prestress design of tensegrity structures using semidefinite programming. Adv Civ Eng. https://doi.org/10.1155/2019/5081463

    Article  Google Scholar 

  32. Bel Hadj Ali N, Smith IFC (2010) Dynamic behavior and vibration control of a tensegrity structure. Int J Solid Struct 47:1285–1296. https://doi.org/10.1016/j.ijsolstr.2010.01.012

    Article  MATH  Google Scholar 

  33. Bel Hadj Ali N, Smith IFC (2010) Dynamic behavior and vibration control of a tensegrity structure. Int J Solids Struct. https://doi.org/10.1016/j.ijsolstr.2010.01.012

    Article  MATH  Google Scholar 

  34. Tran HC, Lee J (2010) Self-stress design of tensegrity grid structures with exostresses. Int J Solids Struct 47:2660–2671. https://doi.org/10.1016/j.ijsolstr.2010.05.020

    Article  MATH  Google Scholar 

  35. Masic M, Skelton RE (2006) Selection of prestress for optimal dynamic/control performance of tensegrity structures. Int J Solids Struct 43:2110–2125. https://doi.org/10.1016/j.ijsolstr.2005.06.066

    Article  MATH  Google Scholar 

  36. Moored KW, Bart-Smith H (2007) The analysis of tensegrity structures for the design of a morphing wing. J Appl Mech Trans ASME 74:668–676. https://doi.org/10.1115/1.2424718

    Article  Google Scholar 

  37. Lee S, Lee J, Kang J (2017) A genetic algorithm based form-finding of tensegrity structures with multiple self-stress states. J Asian Architect Build Eng. https://doi.org/10.3130/jaabe.16.155

    Article  Google Scholar 

  38. Albano E, Rodden WP (1969) A doublet-lattice method for calculating lift distributions on planar and non-planar configurations in subsonic flows. AIAA J 7:279–285

    Article  MATH  Google Scholar 

  39. Kalman TP, Rodden WP, Giesing JP (1971) Application of the doublet-lattice method to nonplanar configurations in subsonic flow. J Aircr 8:406–413. https://doi.org/10.2514/3.59117

    Article  Google Scholar 

  40. Parsons WP, Gasparetto VEL, ElSayed MSA (2021) Dynamic aeroelastic performance optimization of adaptive aerospace structures using structural geometric nonlinearities. J Aerosp Eng SSN 0893–1321. https://doi.org/10.22215/etd/2021-14794

  41. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. [1]. Goldberg_Genetic_Algorithms_in_Search.pdf

  42. Fuentes HP, Zehn M (2014) Application of the Craig-Bampton model order reduction method to a composite. Structure 12:37–50

    Google Scholar 

  43. Pastor M, Binda M, Harčarik T (2012) Modal assurance criterion. Procedia Eng 48:543–548. https://doi.org/10.1016/J.PROENG.2012.09.551

    Article  Google Scholar 

  44. Nieto MG, Thomas PV, ElSayed MSA, Saad M, Brown GL, Hilliard LM (2020) Development of efficient dynamic aeroelasticity model for high fidelity pointing accuracy assessment of VLBI earth-based radio antennas. Int J Aeronaut Space Sci 21:693–706. https://doi.org/10.1007/s42405-019-00238-6

    Article  Google Scholar 

  45. Deb K (2001) Multi-objective optimization using evolutionary algorithms: an introduction. Wiley, Hoboken

    MATH  Google Scholar 

  46. Toolbox E (2008) Aluminum alloys—mechanical properties. https://www.engineeringtoolbox.com/properties-aluminum-pipe-d_1340.html

  47. Hitchcox A (2013) High-strength steel is made for hydraulic cylinders. https://www.hydraulicspneumatics.com/technologies/cylinders-actuators/article/21883501/highstrength-steel-is-made-for-hydraulic-cylinders

  48. Nastran NX aeroelastic analysis user’s guide, version 2.1, siemens product lifecycle management software Inc. November, 2001. https://simcompanion.hexagon.com/customers/s/article/aeroelastic-analysis-user-s-guide-doc9182

  49. MacNeal RH, States U, Aeronautics N, Administration S, Scientific, T.I. Office (1970) The NASTRAN Theoretical Manual, Scientific and Technical Information Office, National Aeronautics and Space Administration. https://books.google.ca/books?id=p51YAAAAYAAJ

Download references

Funding

Professor Mostafa S.A. ElSayed acknowledges the financial support provided by The Natural Sciences and Engineering research Council of Canada (Grant Number CRDPJ 530880 – 18) in collaboration with Intertronic Solutions Inc. (ISI) and The National Aeronautics and Space Administration (NASA). The authors would like to extend their acknowledgements to the engineers of ISI and the Goddard Space Flight Center of NASA for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa S. A. ElSayed.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Design Vectors for Best Individuals

The following tables give the design vectors of the best individuals for each subcase. Each vector represents an actuation length change in inches of the respective active element to induce prestress in the member and tune the geometric stiffness matrix for vibration attenuation. As the proposed framework is adaptive in nature a separate design vector is found for each specific subcase to ensure the best individual is tailored specifically to that subcase to achieve the best result.

Element ID

PSD Analysis with Davenport Spectrum

Primary

Secondary

16

32

44

16

32

44

85

0.034

− 0.139

− 0.269

− 0.059

− 0.075

− 0.079

55

0.015

0.002

− 0.135

− 0.010

0.001

− 0.130

65

0.270

− 0.134

− 0.135

− 0.604

− 0.235

− 0.137

75

− 0.021

0.003

− 0.135

− 0.042

0.013

− 0.042

2

0.290

0.084

0.049

0.130

− 0.020

0.090

5

0.349

0.085

0.049

0.174

0.050

0.048

57

0.827

0.222

0.280

0.832

1.219

0.297

56

1.786

0.575

0.719

1.607

0.623

0.722

94

0.301

− 0.096

− 0.477

− 0.668

− 0.141

− 0.479

10

0.730

0.041

− 0.086

0.263

0.030

0.041

12

0.317

0.034

0.049

0.301

0.035

0.050

63

0.944

0.211

0.280

0.090

0.099

0.279

64

1.556

0.605

0.585

1.365

0.606

0.715

95

0.786

− 0.220

− 0.477

− 0.450

− 0.446

− 0.480

9

− 0.357

0.036

− 0.086

0.288

− 0.059

0.057

13

0.424

0.036

− 0.454

0.296

0.113

0.040

67

 

0.229

0.280

 

0.200

0.310

66

 

0.620

0.585

 

0.623

0.729

96

 

− 0.444

− 0.244

 

− 0.432

− 0.259

18

 

0.119

− 0.086

 

0.117

0.046

21

 

0.097

− 0.086

 

0.044

0.082

87

 

0.236

0.280

 

0.265

0.295

86

 

0.481

0.953

 

0.506

0.789

92

 

− 0.117

− 0.477

 

− 0.121

− 0.770

28

 

0.018

0.416

 

− 0.036

0.051

30

 

0.092

0.282

 

1.042

0.012

77

 

0.207

0.415

 

0.230

− 0.330

76

 

0.491

1.087

 

0.585

0.715

98

 

− 0.100

− 0.109

 

− 0.106

− 0.478

19

 

0.109

0.049

 

0.074

− 0.129

22

 

0.160

− 0.086

 

− 0.018

0.119

83

 

− 0.086

0.648

 

− 0.190

0.283

84

  

1.087

  

0.747

91

  

− 0.244

  

− 0.485

29

  

0.282

  

0.219

31

  

0.049

  

0.057

73

  

0.280

  

0.280

74

  

0.719

  

0.452

97

  

− 0.244

  

0.142

3

  

− 0.086

  

0.854

4

  

0.282

  

0.058

53

  

0.514

  

0.350

54

  

0.585

  

0.784

93

  

− 0.244

  

− 0.467

Element ID

TDG Analysis with One-Minus Cosine

Primary

Secondary

16

32

44

16

32

44

85

− 0.006

− 0.129

− 0.140

− 0.225

− 0.132

− 1.228

55

0.003

0.018

− 0.135

0.017

0.000

− 0.135

65

− 0.582

− 0.134

− 0.135

− 0.121

− 0.133

− 0.135

75

0.013

0.001

− 0.135

0.175

0.021

− 0.135

2

− 0.146

2.008

0.048

0.352

0.084

0.049

5

0.172

0.097

− 0.242

0.620

0.084

0.049

57

1.162

0.227

1.242

1.062

0.232

0.280

56

1.333

0.460

0.717

1.805

0.936

0.719

94

− 0.822

0.930

− 0.477

− 0.181

− 0.100

− 0.477

10

0.039

0.024

0.044

0.304

0.036

0.049

12

0.333

0.131

0.054

0.558

0.036

− 1.044

63

0.924

0.218

0.280

1.135

− 0.272

0.280

64

1.213

0.661

0.719

1.883

0.606

0.719

95

− 0.522

− 0.441

− 0.478

0.019

− 0.442

− 1.570

9

0.311

− 0.316

0.049

0.293

− 0.536

0.049

13

0.299

0.040

0.048

0.541

0.036

0.049

67

 

0.631

0.281

 

0.228

− 0.812

66

 

0.609

0.724

 

0.606

0.719

96

 

− 0.447

− 0.522

 

− 0.417

− 0.477

18

 

0.584

0.034

 

0.117

0.049

21

 

0.100

0.049

 

0.220

0.049

87

 

0.231

0.280

 

0.238

0.280

86

 

0.470

0.720

 

− 0.146

− 0.374

92

 

0.421

− 0.478

 

− 0.098

− 0.477

28

 

0.083

0.048

 

0.084

0.049

30

 

0.741

0.066

 

0.084

0.049

77

 

0.238

0.285

 

0.232

0.280

76

 

0.496

0.719

 

0.750

0.719

98

 

− 0.099

− 0.477

 

− 0.296

− 0.477

19

 

0.162

0.049

 

0.252

1.141

22

 

0.153

0.084

 

0.153

0.049

83

 

− 0.163

0.277

 

− 0.174

0.280

84

  

0.719

  

0.719

91

  

− 0.478

  

− 0.477

29

  

0.047

  

0.049

31

  

0.048

  

0.049

73

  

0.279

  

0.280

74

  

0.719

  

0.719

97

  

− 0.477

  

− 0.477

3

  

0.048

  

0.049

4

  

0.050

  

0.049

53

  

0.280

  

0.280

54

  

0.719

  

− 0.374

93

  

− 0.477

  

− 0.477

Appendix B: Expanded Equations

The force influence matrix, \({{\varvec{S}}}_{{\varvec{F}}}\), defines the resulting effective prestress in each member due to a given active element length change and is defined as:

$${\textbf{S}}_{{\varvec{F}}}\Delta \textbf{L}={\textbf{P}}_{{{\varvec{k}}}_{\textbf{e}\textbf{f}\textbf{f}},}$$
$${\textbf{S}}_{{\varvec{F}}}=-{\textbf{W}}_{\textbf{s}}{\left({{\textbf{W}}_{\textbf{s}}}^{\textbf{T}}\textbf{G}{\textbf{W}}_{\textbf{s}}\right)}^{-1}{{\textbf{W}}_{\textbf{s}}}^{\textbf{T}},$$

where \(\Delta \textbf{L}\) is a design vector representing the length change in the active members, this is kept zero for the non-active elements. \({{\varvec{W}}}_{\textbf{s}}\) is a matrix whose s columns pertain to the individual self-stress modes and is calculated with the null space of the equilibrium matrix, finally, G is the flexibility matrix. The effective prestress, \({{\varvec{P}}}_{{{\varvec{k}}}_{{\varvec{e}}{\varvec{f}}{\varvec{f}}}}\), is:

$${{\varvec{P}}}_{{{\varvec{k}}}_{{\varvec{e}}{\varvec{f}}{\varvec{f}}}}=\left({{\varvec{W}}}_{{\varvec{r}}}{{{\varvec{V}}}_{{\varvec{r}}}}^{-1}{{{\varvec{U}}}_{{\varvec{r}}}}^{\textbf{T}}\right)\Delta {\varvec{p}}-{{\varvec{W}}}_{{\varvec{s}}}\left[{\left({{{\varvec{W}}}_{{\varvec{s}}}}^{{\varvec{T}}}{\varvec{G}}{{\varvec{W}}}_{{\varvec{s}}}\right)}^{-1}{{{\varvec{W}}}_{{\varvec{s}}}}^{\textbf{T}}\left(\Delta {\varvec{L}}+{\varvec{G}}\left({{\varvec{W}}}_{{\varvec{r}}}{{{\varvec{V}}}_{{\varvec{r}}}}^{-1}{{{\varvec{U}}}_{{\varvec{r}}}}^{\textbf{T}}\right)\Delta {\varvec{p}}\right)\right],$$

where \(\Delta {\varvec{p}}\) is a vector of element forces from the applied load. Next, the geometric stiffness matrix, \({{\varvec{K}}}_{{\varvec{G}}}\), using the effective prestress per element i is defined for an Euler–Bernoulli beam as follows:

$${{\varvec{K}}}_{{\varvec{G}}}\left({\varvec{i}}\right)=\frac{{{\varvec{P}}}_{{{\varvec{k}}}_{{\varvec{e}}{\varvec{f}}{\varvec{f}}}}({\varvec{i}})}{{{\varvec{l}}}_{{\varvec{k}}}({\varvec{i}})}\left[\begin{array}{cccccc}1& 0& 0& 0& 0& 0\\ 0& 1& 0& 0& -1& 0\\ 0& 0& 1& 0& 0& -1\\ 0& 0& 0& 1& 0& 0\\ 0& -1& 0& 0& 1& 0\\ 0& 0& -1& 0& 0& 1\end{array}\right],$$

where \({{\varvec{l}}}_{{\varvec{k}}}\) is the element’s length. The following metric is used to determine a ranking of each element’s effectiveness to alter the geometric stiffness matrix and correspondingly the system response:

$${\boldsymbol{\Gamma }}_{{\varvec{j}}}=\sum_{{\varvec{i}}=1}^{{\varvec{m}}}{{\varvec{S}}}_{{\varvec{F}}}({\varvec{i}},{\varvec{j}}),$$
$$\boldsymbol{\Gamma }=\textbf{m}\textbf{a}\textbf{x}{\varvec{N}}\left({\boldsymbol{\Gamma }}_{{\varvec{j}}}\right),$$

where i and j represent the current row and column of an m x nel matrix, respectively, and N is chosen by the designer as the number of active elements desired.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parsons, W.P., Gasparetto, V.E.L., ElSayed, M.S.A. et al. Multi-objective Design Optimization of Structural Geometric Nonlinearities for Response Attenuation of VLBI Antennae Subject to Aerodynamic Turbulence. J. Vib. Eng. Technol. 11, 53–70 (2023). https://doi.org/10.1007/s42417-022-00558-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-022-00558-0

Keywords

Navigation