Skip to main content

Advertisement

Log in

Steady-State and Bifurcation Analysis of Nonlinear Jumps in a Non-ideal Rotor System Using Magnetorheological Fluid Dampers

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

Non-ideal high-speed rotors often exhibit the Sommerfeld effect characterized by nonlinear jumps and eventually gets destabilized. This paper presents a bifurcation analysis to attenuate the jumps in a non-ideal internally damped DC motor-driven shaft-disk system via magnetorheological (MR) fluid damper.

Methods

A nonlinear hyperbolic tangent model of MR damper is proposed and linearized using equivalent linearization technique. To meet the demands of reliable engineering design, the system parameters of the proposed MR model are optimized using genetic algorithm (GA) with the consideration of parametric uncertainty. Then the system equations of the non-ideal rotor system are derived using Lagrangian formulation. Following, a characteristic equation of fifth-order polynomial in rotor speed is obtained through energy balance. The steady-state response is studied with the help of control current of the MR damper and subsequently verified through a bifurcation analysis with the help of root locus technique. A few results are also validated with earlier works.

Results

The nonlinear jumps are found to be attenuated as the control current of MR damper increases. The root locus technique confirms the jump phenomena though the existence of multiplicity of roots of the characteristic equation considering supply voltage as a gain. The proposed saddle-node bifurcation study confirms the cessation of the Sommerfeld effect when two unstable (saddle) points are found to be degenerated into a stable node at a specific bifurcation value of the MR control current.

Conclusion

The nonlinear jumps of non-ideal rotor can be attenuated by altering the control current of the MR damper. This study also suggests that MR-based semi-active strategy is more effective than the AMB-based active control as the former takes much lesser current to attenuate the jumps. MR-based attenuation is found to be safer and more reliable than its active counterpart, i.e., AMB as the overall natural frequency of MR-based non-ideal rotor is far more behind the instability threshold of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sommerfeld A (1902) Beiträge zum dynamischen ausbauder festigkeitslehe. Phys Z 3:266–286

    MATH  Google Scholar 

  2. Dasgupta SS (2011) Sommerfeld effect in internally damped shaft-rotor systems. PhD dissertation. IIT Kharagpur

  3. Felix JLP, Balthazar JM (2009) Comments on a nonlinear and nonideal electromechanical damping vibration absorber, Sommerfeld effect and energy transfer. Nonlinear Dyn 55:1–11. https://doi.org/10.1007/s11071-008-9340-8

    Article  MATH  Google Scholar 

  4. Bolla MR, Balthazar JM, Felix JLP, Mook DT (2007) On an approximate analytical solution to a nonlinear vibrating problem, excited by a nonideal motor. Nonlinear Dyn 50(4):841–847

    Article  MATH  Google Scholar 

  5. Warminski J, Balthazar JM, Brasil RMLRF (2001) Vibrations of a non-ideal parametrically and self-excited model. J Sound Vib 245:363–374. https://doi.org/10.1006/jsvi.2000.3515

    Article  MATH  Google Scholar 

  6. Felix JLP, Balthazar JM, Brasil RMLRF (2005) On tuned liquid column dampers mounted on a structural frame under a non-ideal excitation. J Sound Vib 282:1285–1292. https://doi.org/10.1016/j.jsv.2004.05.006

    Article  Google Scholar 

  7. Balthazar JM, Mook DT, Weber HI et al (2003) An overview on non-ideal vibrations. Meccanica 38:613–621. https://doi.org/10.1023/A:1025877308510

    Article  MATH  Google Scholar 

  8. Dimentberg MF, McGovern L, Norton RL et al (1997) Dynamics of an unbalanced shaft interacting with a limited power supply. Nonlinear Dyn 13:171–187. https://doi.org/10.1023/A:1008205012232

    Article  MATH  Google Scholar 

  9. Samantaray AK, Dasgupta SS, Bhattacharyya R (2010) Sommerfeld effect in rotationally symmetric planar dynamical systems. Int J Eng Sci 48:21–36. https://doi.org/10.1016/j.ijengsci.2009.06.005

    Article  Google Scholar 

  10. Samantaray AK (2009) On the non-linear phenomena due to source loading in rotor-motor systems. Proc Inst Mech Eng Part C J Mech Eng Sci 223:809–818. https://doi.org/10.1243/09544062JMES1279

    Article  Google Scholar 

  11. Dasgupta SS, Samantaray AK, Bhattacharyya R (2010) Stability of an internally damped non-ideal flexible spinning shaft. Int J Non Linear Mech 45:286–293. https://doi.org/10.1016/j.ijnonlinmec.2009.12.002

    Article  Google Scholar 

  12. Samantaray AK, Dasgupta SS, Bhattacharyya R (2010) Bond graph modeling of an internally damped nonideal flexible spinning shaft. J Dyn Syst Meas Control 132:061502-1-061502–9. https://doi.org/10.1115/1.4002483͔

    Article  Google Scholar 

  13. Dasgupta SS, Rajamohan V (2017) Dynamic characterization of a flexible internally damped spinning shaft with constant eccentricity. Arch Appl Mech 87:1769–1779. https://doi.org/10.1007/s00419-017-1285-2

    Article  Google Scholar 

  14. Dasgupta SS, Rajan JA (2018) Steady-state and transient responses of a flexible eccentric spinning shaft. FME Trans 46:133–137. https://doi.org/10.5937/fmet1801133D

    Article  Google Scholar 

  15. Belato D (1998) Nao-linearidades no Eletro Peˆndulo Doctoral dissertation

  16. Kossoski A, Tusset A, Janzen FC et al (2018) Jump attenuation in a non-ideal system using shape memory element. In: MATEC Web of conferences

  17. Jha AK, Dasgupta SS (2019) Attenuation of Sommerfeld effect in an internally damped eccentric shaft-disk system via active magnetic bearings. Meccanica 54:311–320. https://doi.org/10.1007/s11012-018-00936-7

    Article  MathSciNet  Google Scholar 

  18. Felix JLP, Balthazar JM, Brasil RMLRF, Pontes BR (2009) On Lugre friction model to mitigate nonideal vibrations. J Comput Nonlinear Dyn 4:034503. https://doi.org/10.1115/1.3124783

    Article  Google Scholar 

  19. Weber F, Maślanka M (2012) Frequency and damping adaptation of a TMD with controlled MR damper. Smart Mater Struct 21:055011. https://doi.org/10.1088/0964-1726/21/5/055011

    Article  Google Scholar 

  20. Dyke SJ, Spencer BF, Sain MK, Carlson JD (1996) Modeling and control of magnetorheological dampers for seismic response reduction. Smart Mater Struct 5:565–575. https://doi.org/10.1088/0964-1726/5/5/006

    Article  Google Scholar 

  21. Deng H, Gao Y, Hu R et al (2021) Self-sensing automotive magnetorheological dampers for low frequency vibration. Smart Mater Struct 30:115015. https://doi.org/10.1088/1361-665x/ac2c5f

    Article  Google Scholar 

  22. Upadhyay RV, Choi S-B (2021) Modeling, measurements and validation of magnetic field dependent flow behavior of magnetorheological fluids; static and dynamic yield stress. Smart Mater Struct 30:117002. https://doi.org/10.1088/1361-665x/ac2ba8

    Article  Google Scholar 

  23. Al CK, Goes LCS, Balthazar JM (2011) A note on the attenuation of the sommerfeld effect of a non-ideal system taking into account a MR damper and the complete model of a DC motor. JVC J Vib Control 17:1112–1118. https://doi.org/10.1177/1077546310384000

    Article  MATH  Google Scholar 

  24. Piccirillo V, Tusset AM, Balthazar JM (2014) Dynamical jump attenuation in a non-ideal system through a magnetorheological damper. J Theor Appl Mech 52:595–604

    Google Scholar 

  25. Zapoměl J, Ferfecki P, Forte P (2019) Vibrations attenuation of a Jeffcott rotor by application of a new mathematical model of a magnetorheological squeeze film damper based on a bilinear oil representation. Acta Mech 230:1625–1640. https://doi.org/10.1007/s00707-018-2343-8

    Article  Google Scholar 

  26. Tusset AM, Balthazar JM, Chavarette FR, Felix JLP (2012) On energy transfer phenomena, in a nonlinear ideal and nonideal essential vibrating systems, coupled to a (MR) magneto-rheological damper. Nonlinear Dyn 69:1859–1880. https://doi.org/10.1007/s11071-012-0391-5

    Article  MathSciNet  MATH  Google Scholar 

  27. Tusset AM, Balthazar JM, Felix JLP (2013) On elimination of chaotic behavior in a non-ideal portal frame structural system, using both passive and active controls. JVC J Vib Control 19:803–813. https://doi.org/10.1177/1077546311435518

    Article  MathSciNet  MATH  Google Scholar 

  28. Tusset AM, Balthazar JM (2013) On the chaotic suppression of both ideal and non-ideal duffing based vibrating systems, using a magnetorheological damper. Differ Equ Dyn Syst 21:105–121. https://doi.org/10.1007/s12591-012-0128-4

    Article  MathSciNet  MATH  Google Scholar 

  29. Tusset AM, Piccirillo V, Balthazar JM, RebelloDaFonsecaBrasil RML (2015) On suppression of chaotic motions of a portal frame structure under non-ideal loading using a magneto-rheological damper. J Theor Appl Mech 53:653–664. https://doi.org/10.15632/jtam-pl.53.3.653

    Article  Google Scholar 

  30. Lima JJ, Balthazar JM, Rocha RT et al (2019) On positioning and vibration control application to robotic manipulators with a nonideal load carrying. Shock Vib. https://doi.org/10.1155/2019/5408519

    Article  Google Scholar 

  31. Kumar T, Kumar R, Jain SC (2021) Numerical investigation of semi-active torsional vibration control of heavy turbo-generator rotor using magnetorheological fluid dampers. J Vib Eng Technol 9:967–981. https://doi.org/10.1007/S42417-020-00276-5

    Article  Google Scholar 

  32. Jha AK, Dasgupta SS (2020) Suppression of Sommerfeld effect in a non-ideal discrete rotor system with fractional order external damping. Eur J Mech A/Solids 79:103873. https://doi.org/10.1016/j.euromechsol.2019.103873

    Article  MathSciNet  MATH  Google Scholar 

  33. Genta G (2004) On a persistent misunderstanding of the role of hysteretic damping in rotordynamics. J Vib Acoust 126:459. https://doi.org/10.1115/1.1759694

    Article  Google Scholar 

  34. Winslow W (1947) Method and means for translating electrical impulses into mechanical force. US Pat. 2,417,850 6

  35. Winslow WM (1949) Induced fibration of suspensions. J Appl Phys 20:1137–1140. https://doi.org/10.1063/1.1698285

    Article  Google Scholar 

  36. Dyke SJ, Spencer BF, Sain MK, Carlson JD (1998) An experimental study of MR dampers for seismic protection. Smart Mater Struct 7:693–703. https://doi.org/10.1088/0964-1726/7/5/012

    Article  Google Scholar 

  37. Johnson EA, Ramallo JC, Spencer BF, Sain MK (1998) Intelligent base isolation systems. In: Second world conf struct control, pp 1–10

  38. Jiang Z, Christenson RE (2010) Hyperbolic tangent model for 200 kN large-scale magneto-rheological fluid (MR) damper. Univ Connect Adv Hazard Mitig Lab Rep UConn-AHML 01. http://doi.org/datacenterhub

  39. Guglielmino E, Sireteanu T, Stammers CW et al (2008) Semi-active suspension control: Improved vehicle ride and road friendliness. Springer, London

    MATH  Google Scholar 

  40. Hu G, Liu Q, Ding R, Li G (2017) Vibration control of semi-active suspension system with magnetorheological damper based on hyperbolic tangent model. Adv Mech Eng 9:168781401769458. https://doi.org/10.1177/1687814017694581

    Article  Google Scholar 

  41. To CWS (2012) Nonlinear random vibration analytical techniques and applications, 2nd edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  42. Dutta S, Chakraborty G (2014) Performance analysis of nonlinear vibration isolator with magneto-rheological damper. J Sound Vib 333:5097–5114

    Article  Google Scholar 

  43. Azraai MR, Priyandoko G, Yusoff AR, Rashid MFFA (2015) Parametric optimization of magneto-rheological fluid damper using particle swarm optimization. Int J Automot Mech Eng 11:2591–2599. https://doi.org/10.15282/ijame.11.2015.37.0218

    Article  Google Scholar 

  44. Pang H, Liu F, Xu Z (2018) Variable universe fuzzy control for vehicle semi-active suspension system with MR damper combining fuzzy neural network and particle swarm optimization. Neurocomputing 306:130–140. https://doi.org/10.1016/J.NEUCOM.2018.04.055

    Article  Google Scholar 

  45. Krishna H, Kumar H, Gangadharan K (2017) Optimization of magneto-rheological damper for maximizing magnetic flux density in the fluid flow gap through FEA and GA approaches. J Inst Eng Ser C 98:533–539. https://doi.org/10.1007/s40032-016-0251-z

    Article  Google Scholar 

  46. Shirazi MJ, Vatankhah R, Boroushaki M et al (2012) Application of particle swarm optimization in chaos synchronization in noisy environment in presence of unknown parameter uncertainty. Commun Nonlinear Sci Numer Simul 17:742–753. https://doi.org/10.1016/j.cnsns.2011.05.032

    Article  MathSciNet  Google Scholar 

  47. Nozaki R, Balthazar JM, Tusset AM et al (2013) Nonlinear control system applied to atomic force microscope including parametric errors. J Control Autom Electr Syst 24:223–231. https://doi.org/10.1007/s40313-013-0034-1

    Article  Google Scholar 

  48. Balthazar JM, Tusset AM, De Souza SLT, Bueno AM (2013) Microcantilever chaotic motion suppression in tapping mode atomic force microscope. Proc Inst Mech Eng Part C J Mech Eng Sci 227:1730–1741. https://doi.org/10.1177/0954406212467933

    Article  Google Scholar 

  49. Xu T, Zuo W, Xu T et al (2010) An adaptive reanalysis method for genetic algorithm with application to fast truss optimization. Acta Mech Sin 26:225–234. https://doi.org/10.1007/s10409-009-0323-x

    Article  MathSciNet  MATH  Google Scholar 

  50. Genta G (2005) Dynamics of rotating systems. Springer US, New York

    Book  MATH  Google Scholar 

  51. Cveticanin L, Zukovic M, Balthazar JM (2018) Dynamics of mechanical systems with non-ideal excitation. Springer International Publishing, Berlin

    Book  MATH  Google Scholar 

  52. Kandil MA (2004) On rotor internal damping instability. PhD dissertation. Imperial College London

  53. Genin J (1966) Effect of nonlinear material damping on whirling shafts. Appl Sci Res 15:1–11. https://doi.org/10.1007/BF00411540

    Article  Google Scholar 

  54. Bhattacharyya R, Mukherjee A, Samantaray AK (2003) Harmonic oscillations of non-conservative, asymmetric, two-degree-of-freedom systems. J Sound Vib 264:973–980. https://doi.org/10.1016/S0022-460X(02)01540-7

    Article  Google Scholar 

  55. Bou-Rabee NM, Marsden JE, Romero LA (2004) Tippe top inversion as a dissipation-induced instability. SIAM J Appl Dyn Syst 3:352–377. https://doi.org/10.1137/030601351

    Article  MathSciNet  MATH  Google Scholar 

  56. Zukovic M, Cveticanin L (2007) Chaotic responses in a stable duffing system of non-ideal type. J Vib Control 13:751–767. https://doi.org/10.1177/1077546307072542

    Article  MATH  Google Scholar 

  57. Suherman S (1998) Vibration suppression of rotating shafts passing thorough resonances by switching shaft stiffness. J Vib Acoust Trans ASME 120:170–180. https://doi.org/10.1115/1.2893801

    Article  Google Scholar 

  58. Wauer SS, Wauer J, Suherman S (2008) Vibration suppression of rotating shafts passing through resonances by switching shaft stiffness. J Vib Acoust 120:170. https://doi.org/10.1115/1.2893801

    Article  Google Scholar 

  59. Belato D, Weber HI, Balthazar JM, Mook DT (2001) Chaotic vibrations of a nonideal electro-mechanical system. Int J Solids Struct 38:1699–1706. https://doi.org/10.1016/S0020-7683(00)00130-X

    Article  MATH  Google Scholar 

  60. Ryzhik B, Amer T, Duckstein H, Sperling L (2001) Zum Sommerfeldeffekt beim selbsttatigen Auswuchten in einer Ebene. Tech Mech 21:297–312

    Google Scholar 

  61. Ogata K (2010) Modern control engineering. Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

Download references

Acknowledgements

This research received no specific Grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sovan Sundar Dasgupta.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Equivalent Linearization Technique

The underlying idea of equivalent linearization is to replace the Eq. (3) with equivalent linear terms of z and \(\dot{z}\) as:

$$F_{{_{{{\text{MR}}}} }}^{{{\text{Eq}}{.}}} = k_{{\text{e}}} z + c_{{\text{e}}} \dot{z},$$
(20)

where \(c_{{\text{e}}}\) and \(k_{{\text{e}}}\) are the equivalent damping and stiffness coefficients that best approximate the nonlinear force provided by the MR damper described in Eq. (1).

The error or the deficiency term may be expressed as:

$$e\left( {z,\dot{z}} \right) = \left( {F_{{_{{{\text{MR}}}} }}^{{{\text{Eq}}{.}}} - f_{{_{{{\text{MR}}}} }}^{z} } \right).$$
(21)

Neglecting higher-order terms, the hyperbolic tangent function may be approximated as \(\tanh \left( {\delta \dot{z}} \right) \simeq \delta \dot{z} - \left( {\delta \dot{z}} \right)^{3} /3.\) Considering an arbitrary prescribed base motion \(z = a_{0} \cos \left( {\overline{\omega }t} \right)\) and using the following criteria, the error \(\left( {e\left( {z,\dot{z}} \right)} \right)\) given in Eq. (21) may be minimized:

$$\frac{\partial \left( E \right)}{{\partial k_{{\text{e}}} }} = 0,\frac{\partial \left( E \right)}{{\partial c_{{\text{e}}} }} = 0 \, \& \, \left[ {\frac{{\partial^{2} \left( E \right)}}{{\partial k_{{\text{e}}} \partial c_{{\text{e}}} }}} \right]^{2} - \left[ {\frac{{\partial^{2} \left( E \right)}}{{\partial k_{{\text{e}}}^{2} }}\frac{{\partial^{2} \left( E \right)}}{{\partial c_{{\text{e}}}^{2} }}} \right] < 0,$$
(22)

where \(E = \int\limits_{0}^{{2\pi /\overline{\omega }}} {e\left( {z,\dot{z}} \right)^{2} {\text{d}}t} .\)

Hence, the equivalent stiffness \(\left( {k_{{\text{e}}} } \right)\) and damping \(\left( {c_{{\text{e}}} } \right)\) coefficients can be evaluated as:

$$k_{{\text{e}}} = k_{0} + \frac{{\overline{\omega }\alpha }}{{\pi a_{0}^{2} }}\int\limits_{0}^{{2\pi /\overline{\omega }}} {\tanh \left( {\delta \dot{z}} \right)z{\text{d}}t} = k_{0} ,$$
(23)
$$c_{{\text{e}}} = c_{0} + \frac{\alpha }{{\pi \overline{\omega }a_{0}^{2} }}\int\limits_{0}^{{2\pi /\overline{\omega }}} {\tanh \left( {\delta \dot{z}} \right)} \, \dot{z}{\text{d}}t = c_{0} + \alpha \delta \left( {1 - \frac{{\delta^{2} a_{0}^{2} \overline{\omega }^{3} }}{3}} \right).$$
(24)

Appendix B

The coefficients of the transfer function given in Eq. (19) are as follows:

$$\begin{aligned} & N_{4} = m^{2} \mu_{{\text{m}}} ,N_{2} = - \mu_{{\text{m}}} \left( {2\overline{M}\overline{K} - \left( {\overline{R} - R_{{\text{i}}} } \right)_{{\text{d}}}^{2} } \right),N_{0} = \overline{K}^{2} \mu_{{\text{m}}} , \, D_{5} = \left( {m^{2} \left( {\mu_{{\text{m}}}^{2} + R_{{\text{m}}} R_{{\text{r}}} } \right) + m^{2} e^{2} R_{{\text{m}}} \overline{R}} \right), \\ & D_{3} = - \left( {\mu_{{\text{m}}}^{2} + R_{{\text{m}}} R_{{\text{r}}} } \right)\left( {2m\overline{K} - \left( {\overline{R} - R_{{\text{i}}} } \right)_{{\text{d}}}^{2} } \right){\text{ and }}D_{1} = \overline{K}^{2} \left( {\mu_{{\text{m}}}^{2} + R_{{\text{m}}} R_{{\text{r}}} } \right){. } \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, A.K., Dasgupta, S.S. Steady-State and Bifurcation Analysis of Nonlinear Jumps in a Non-ideal Rotor System Using Magnetorheological Fluid Dampers. J. Vib. Eng. Technol. 10, 2543–2555 (2022). https://doi.org/10.1007/s42417-022-00503-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-022-00503-1

Keywords

Navigation