Skip to main content
Log in

An adaptive reanalysis method for genetic algorithm with application to fast truss optimization

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Although the genetic algorithm (GA) for structural optimization is very robust, it is very computationally intensive and hence slower than optimality criteria and mathematical programming methods. To speed up the design process, the authors present an adaptive reanalysis method for GA and its applications in the optimal design of trusses. This reanalysis technique is primarily derived from the Kirsch’s combined approximations method. An iteration scheme is adopted to adaptively determine the number of basis vectors at every generation. In order to illustrate this method, three classical examples of optimal truss design are used to validate the proposed reanalysis-based design procedure. The presented numerical results demonstrate that the adaptive reanalysis technique affects very slightly the accuracy of the optimal solutions and does accelerate the design process, especially for large-scale structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dorn W., Gomory R., Greenberg H.: Automatic design of optimal structures. J. Mech. 3(1), 25–52 (1964)

    Google Scholar 

  2. Guo X., Cheng G.D.: Epsilon-continuation approach for Truss topology optimization. Acta Mech. Sin. 20(5), 526–533 (2004)

    Article  Google Scholar 

  3. Zhang W.H., Dai G.M., Wang F.W., Sun S.P., Bassir H.: Using strain energy-based prediction of effective elastic properties in topology optimization of material microstructures. Acta Mech. Sin. 2(1), 77–89 (2007)

    Article  MathSciNet  Google Scholar 

  4. Sui Y.K., Du J.Z., Guo Y.Q.: Independent continuous mapping for topological optimization of frame structures. Acta Mech. Sin. 22(6), 611–619 (2006)

    Article  MathSciNet  Google Scholar 

  5. Leu L.J.: A reduction method for boundary element reanalysis. Comput. Method. Appl. M. 178(13,14), 125–139 (1999)

    MATH  Google Scholar 

  6. Levy R., Kirsch U., Liu S.: Reanalysis of trusses using modied initial designs. Struct. Multidisc. Optim. 19(2), 105–112 (2000)

    Article  Google Scholar 

  7. Kirsch U., Papalambros P.Y.: Exact and accurate reanalysis of structures for geometrical changes. Eng. Comp. 4(17), 363–372 (2001)

    Article  Google Scholar 

  8. Kirsch U., Bogomolni M.: Error evaluation in approximate reanalysis of structures. Struct. Multidisc. Optim. 28(2,3), 77–86 (2004)

    Google Scholar 

  9. Chen S.H., Yang X.W., Wu B.S.: Static displacement reanalysis of structures using perturbation and Pade approximation. Commun. Numer. Meth. Eng. 16(2), 75–82 (2000)

    Article  MATH  Google Scholar 

  10. Chen S.H., Yang X.W.: Extended Kirsch combined method for eigenvalue reanalysis. AIAA J. 38(5), 927–930 (2000)

    Article  Google Scholar 

  11. Chen S.H., Yang X.W., Lian H.D.: Comparison of several eigenvalue reanalysis methods for modified structures. Struct. Optim. 20(4), 253–259 (2000)

    Article  Google Scholar 

  12. Leu L.J., Chang W.H.: Reanalysis-based optimal design of trusses. Int. J. Numer. Meth. Eng. 49(8), 1007–1028 (2000)

    Article  MATH  Google Scholar 

  13. Goldberg D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  14. Li S.J., Liu Y.X.: Identification of vibration loads on hydro generator by using hybrid genetic algorithm. Acta Mech. Sin. 22(6), 603–610 (2006)

    Article  Google Scholar 

  15. Hadjigeorgiou E.P., Stavroulakis G.E., Massalas C.V.: Shape control and damage identification of beams using piezoelectric actuation and genetic optimization. Int. J. Eng. Sci. 44(7), 409–421 (2006)

    Article  Google Scholar 

  16. Engelhardt M., Schanz M., Stavroulakis G.E., Antes H.: Defect identification in 3-D elastostatics using a genetic algorithm. Optim. Eng. 7(1), 63–79 (2006)

    Article  MATH  Google Scholar 

  17. Gero M.B.P., García A.B., Díaz J.J.D.C.: Design optimization of 3D steel structures: genetic algorithms vs. classical techniques. J. Constr. Steel. Res. 62(12), 1303–1309 (2006)

    Article  Google Scholar 

  18. Kirsch U.: Combined approximations—a general reanalysis approach for structural optimization. Struct. Optim. 20(2), 97–106 (2000)

    Article  Google Scholar 

  19. Yang H.X., Zuo W.J., Wu D.F., Ren L.Q.: Inverse heat conduction analysis of quenching process based on finite element method and genetic algorithm. J. Comput. Theor. Nanos. 5(8), 1708–1712 (2008)

    Article  Google Scholar 

  20. Schmit L.A., Farshi B.: Some approximation concepts for structural synthesis. AIAA J. 12(5), 692–699 (1974)

    Article  Google Scholar 

  21. Rizzi, P.: Optimization of multiconstrained structures based on optimality criteria. AIAA/ASME/SAE 17th Structures, Structural Dynamics and Materials Conference, King of Prussia, PA (1976)

  22. Leu L.J., Chang W.H.: Reanalysis-based optimal design of trusses. Int. J. Numer. Meth. Eng. 49(8), 1007–1028 (2000)

    Article  MATH  Google Scholar 

  23. Zhou M., Rozvany G.I.N.: DCOC: an optimality criteria method for large systems, Part II: algorithm. Struct. Multidisc. Optim. 6(4), 250–262 (1993)

    Google Scholar 

  24. Lee K.S., Geem Z.W.: A new structural optimization method based on the harmony search algorithm. Comput. Struct. 82(9,10), 781–798 (2004)

    Article  Google Scholar 

  25. Saka M.P.: Optimum design of pin-jointed steel structures with practical applications. J. Struct. Eng. ASCE 116(10), 2599–2620 (1990)

    Article  Google Scholar 

  26. Thierauf G., Cai J.: Parallelization of evolution strategy for discrete structural optimization problems. Comput-Aided Civ. Inf. 13(1), 23–30 (1998)

    Article  Google Scholar 

  27. Coello C.A., Christiansen A.D.: Multiobjective optimization of trusses using genetic algorithms. Comput. Struct. 75(6), 647–660 (2000)

    Article  Google Scholar 

  28. Lamberti L., Pappalettere C.: Move limits definition in structural optimization with sequential linear programming, Part II: numerical examples. Comput. Struct. 81(4), 215–238 (2003)

    Article  MathSciNet  Google Scholar 

  29. Jenkins W.M.: A decimal-coded evolutionary algorithm for constrained optimization. Comput. Struct. 80(5,6), 471–480 (2002)

    Article  MathSciNet  Google Scholar 

  30. Toǧan V., Daloǧlu A.T.: An improved genetic algorithm with initial population strategy and self-adaptive member grouping. Comput. Struct. 86(11,12), 1204–1218 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Xu.

Additional information

The project was supported by the National Natural Science Foundation of China (50975121) and the Project 2009-2007 of the Graduate Innovation Fund of Jilin University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, T., Zuo, W., Xu, T. et al. An adaptive reanalysis method for genetic algorithm with application to fast truss optimization. Acta Mech Sin 26, 225–234 (2010). https://doi.org/10.1007/s10409-009-0323-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-009-0323-x

Keywords

Navigation