Skip to main content
Log in

Nonlinear Vibrations of FGM Circular Conical Panel Under In-Plane and Transverse Excitation

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

In this study, nonlinear forced vibrations of a functionally graded material circular conical panel under the transverse excitation and the in-plane excitation are discussed.

Method

The temperature field of the system is considered as a steady-state temperature. Material properties of temperature-dependence for the system vary along the thickness direction in the light of a power law. The nonlinear geometric partial differential equations expressed by general displacements are derived by the first-order shear deformation theory and Hamilton’s principle. Furthermore, the ordinary differential equations of the system are acquired by the Galerkin method. The nonlinear dynamic behaviors of the system are fully analyzed.

Results

Based on numerical simulations, time history records, Poincare maps, phase portraits and bifurcation diagrams are depicted to clarify the existence of complex nonlinear dynamic behaviors of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sofiyev AH, Kuruoglu N (2015) On a problem of the vibration of functionally graded conical shells with mixed boundary conditions. Compos B 70:122–130

    Article  Google Scholar 

  2. Sofiyev AH (2009) The vibration and stability behavior of freely supported FGM conical shells subjected to external pressure. Compos Struct 89:356–366

    Article  Google Scholar 

  3. Teichmann D (1985) An approximation of the lowest eigen frequencies and buckling loads of cylindrical and conical shell panels under initial stress. AIAA J 23:1634–1637

    Article  Google Scholar 

  4. Qiu WB, Zhou ZH, Xu XS (2016) The dynamic behavior of circular plates under impact loads. J Vib Eng Technol 4:111–116

    Google Scholar 

  5. Srinivasan RS, Krishnan PA (1987) Free vibration of conical shell panels. J Sound Vib 117:153–160

    Article  Google Scholar 

  6. Lim CW, Liew KM (1995) Vibratory behaviour of shallow conical shells by a global Ritz formulation. Eng Struct 17:63–69

    Article  Google Scholar 

  7. Lim CW, Liew KM, Kitipornchai S (1998) Vibration of cantilevered laminated composite shallow conical shells. Int J Solids Struct 35:1695–1707

    Article  Google Scholar 

  8. Lim CW, Liew KM (1996) Vibration of shallow conical shells with shear flexibility: a first-order theory. Int J Solids Struct 33:451–468

    Article  Google Scholar 

  9. Lim CW, Kitipornchai S (1999) Effects of subtended and vertex angles on the free vibration of open conical shell panels: a conical coordinate approach. J Sound Vib 219:813–835

    Article  Google Scholar 

  10. Lam KY, Li H, Ng TY, Chua CF (2002) Generalized differential quadrature method for the free vibration of truncated conical panels. Journal of Sound and Vibration 251:329–348

    Article  Google Scholar 

  11. Pinto Correia IF, Mota Soares CM, Mota Soares CA, Herskovits J (2003) Analysis of laminated conical shell structures using higher order models. Compos Struct 62:383–390

    Article  Google Scholar 

  12. Dey S, Karmakar A (2012) Free vibration analyses of multiple delaminated angle-ply composite conical shells—a finite element approach. Compos Struct 94:2188–2196

    Article  Google Scholar 

  13. Zhao X, Li Q, Liew KM, Ng TY (2006) The element-free kp-Ritz method for free vibration analysis of conical shell panels. J Sound Vib 295:906–922

    Article  Google Scholar 

  14. Sofiyev AH (2004) The stability of functionally graded truncated conical shells subjected to aperiod impulsive loading. Int J Solids Struct 41:3411–3424

    Article  Google Scholar 

  15. Naj R, Sabzikar Boroujerdy M, Eslami MR (2008) Thermal and mechanical instability of functionally graded truncated conical shells. Thin Walled Struct 46:65–78

    Article  Google Scholar 

  16. Zhang JH, Li SR (2010) Dynamic buckling of FGM truncated conical shells subjected to non-uniform normal impact load. Compos Struct 92:2979–2983

    Article  Google Scholar 

  17. Sofiyev AH (2012) The non-linear vibration of FGM truncated conical shells. Compos Struct 94:2237–2245

    Article  Google Scholar 

  18. Sofiyev AH, Kuruoglu N (2013) Effect of a functionally graded interlayer on the non-linear stability of conical shells in elastic medium. Compos Struct 99:296–308

    Article  Google Scholar 

  19. Deniz A (2013) Non-linear stability analysis of truncated conical shell with functionally graded composite coatings in the finite deflection. Compos B 51:318–326

    Article  Google Scholar 

  20. Duc ND, Cong PH (2015) Nonlinear thermal stability of eccentrically stiffened functionally graded truncated conical shells surrounded on elastic foundations. Eur J Mech A Solids 50:120–131

    Article  MathSciNet  Google Scholar 

  21. Zhao X, Liew KM (2011) Free vibration analysis of functionally graded conical shell panels by a meshless method. Compos Struct 93:649–664

    Article  Google Scholar 

  22. Akbari M, Kiani Y, Aghdam MM, Eslami MR (2014) Free vibration of FGM Lévy conical panels. Compos Struct 116:732–746

    Article  Google Scholar 

  23. Bich DH, Phuong NT, Tung HV (2012) Buckling of functionally graded conical panels under mechanics loads. Compos Struct 94:1379–1384

    Article  Google Scholar 

  24. Nosir A, Reddy JN (1991) A study of non-linear dynamic equations of higher-order deformation plate theories. Int J Non Linear Mech 26:233–249

    Article  Google Scholar 

  25. Bhimaraddi A (1999) Large amplitude vibrations of imperfect antisymmetric angle-ply laminated plates. J Sound Vib 162:457–470

    Article  Google Scholar 

  26. Reddy JN (2004) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press, New York

    Book  Google Scholar 

  27. Shen HS (2009) Postbuckling of shear deformable FGM cylindrical shells surrounded by an elastic medium. Int J Mech Sci 51:372–383

    Article  Google Scholar 

Download references

Acknowledgements

This paper is fully supported by National Natural Science Foundation of China (11272063, 11472056 and 11290152) and Natural Science Foundation of Tianjin City (13JCQNJC04400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhang.

Appendices

Appendix 1: The Partial Differential Operators \(L_{jL}\) and \(L_{jR}\) of Eq. (15)

$$\begin{aligned} L_{1L} = & \, A_{11} \frac{{\partial^{2} u_{0} }}{{\partial x^{2} }} + \frac{1}{{R^{2} }}A_{66} \frac{{\partial^{2} u_{0} }}{{\partial \theta^{2} }} + \frac{1}{R}A_{11} \frac{{\partial u_{0} }}{\partial x}\sin \beta - \frac{1}{{R^{2} }}A_{22} u_{0} \cos^{2} \beta + \frac{1}{R}(A_{12} + A_{66} )\frac{{\partial^{2} v_{0} }}{\partial x\partial \theta } \\ & \quad - \frac{1}{{R^{2} }}(A_{22} + A_{66} )\frac{{\partial v_{0} }}{\partial \theta }\sin \beta + \frac{1}{{R^{2} }}A_{66} \frac{{\partial^{2} w_{0} }}{{\partial \theta^{2} }}\frac{{\partial w_{0} }}{\partial x} + \frac{1}{{R^{2} }}(A_{12} + A_{66} )\frac{{\partial^{2} w_{0} }}{\partial x\partial \theta }\frac{{\partial w_{0} }}{\partial \theta } + B_{11} \frac{{\partial^{2} \phi_{x} }}{{\partial x^{2} }} \\ & \quad + A_{11} \frac{{\partial^{2} w_{0} }}{{\partial x^{2} }}\frac{{\partial w_{0} }}{\partial x} + \frac{1}{R}(B_{12} + B_{66} )\frac{{\partial^{2} \phi_{\theta } }}{\partial x\partial \theta } + \frac{1}{2R}(A_{11} - A_{12} )\frac{{\partial^{2} w_{0} }}{{\partial x^{2} }}\sin \beta + \frac{1}{R}A_{12} \frac{{\partial w_{0} }}{\partial x}\cos \beta \\ & \quad - \frac{1}{{2R^{3} }}(A_{12} - A_{22} )\frac{{\partial^{2} w_{0} }}{{\partial \theta^{2} }}\sin \beta - \frac{1}{{R^{2} }}(B_{22} + B_{66} )\frac{{\partial \phi_{\theta } }}{\partial \theta }\sin \beta - \frac{1}{{R^{2} }}A_{22} w_{0} \sin \beta \cos \beta \\ & \quad + \frac{1}{{R^{2} }}B_{66} \frac{{\partial^{2} \phi_{x} }}{{\partial \theta^{2} }} + \frac{1}{R}B_{11} \frac{{\partial \phi_{x} }}{\partial x}\sin \beta - \frac{1}{{R^{2} }}B_{22} \phi_{x} \sin^{2} \beta + \frac{1}{R}(N_{xx}^{T} - N_{\theta \theta }^{T} )\sin \beta , \\ \end{aligned}$$
(20)
$$L_{1R} = I_{0} \ddot{u}_{0} + I_{1} \ddot{\phi }_{x} ,$$
(21)
$$\begin{aligned} L_{2L} = & \frac{1}{R}(A_{12} + A_{66} )\frac{{\partial^{2} u_{0} }}{\partial x\partial \theta } + \frac{1}{{R^{2} }}(A_{22} + A_{66} )\frac{{\partial u_{0} }}{\partial \theta }\sin \beta + A_{66} \frac{{\partial^{2} v_{0} }}{{\partial x^{2} }} + \frac{1}{{R^{2} }}KA_{44} \frac{{\partial w_{0} }}{\partial \theta }\cos \beta \\ & \quad - \frac{1}{{R^{2} }}\left( {KA_{44} \cos^{2} \beta + A_{66} \sin^{2} \beta } \right)v_{0} + \frac{1}{R}A_{66} \frac{{\partial w_{0} }}{\partial \theta }\frac{{\partial^{2} w_{0} }}{{\partial x^{2} }} + \frac{1}{{R^{3} }}A_{22} \frac{{\partial^{2} w_{0} }}{{\partial \theta^{2} }}\frac{{\partial w_{0} }}{\partial \theta } \\ & \quad + \frac{1}{{R^{2} }}A_{22} \frac{{\partial^{2} v_{0} }}{{\partial \theta^{2} }} + \frac{1}{R}A_{66} \frac{{\partial v_{0} }}{\partial x}\sin \beta + \frac{1}{{R^{2} }}A_{66} \frac{{\partial w_{0} }}{\partial \theta }\frac{{\partial w_{0} }}{\partial x}\sin \beta + \frac{1}{{R^{2} }}A_{22} \frac{{\partial w_{0} }}{\partial \theta }\cos \beta \\ & \quad + \frac{1}{R}\left( {A_{12} + A_{66} } \right)\frac{{\partial^{2} w_{0} }}{\partial x\partial \theta }\frac{{\partial w_{0} }}{\partial x} + \frac{1}{R}\left( {B_{12} + B_{66} } \right)\frac{{\partial^{2} \phi_{x} }}{\partial x\partial \theta } + \frac{1}{{R^{2} }}\left( {B_{22} + B_{66} } \right)\frac{{\partial \phi_{x} }}{\partial \theta }\sin \beta \\ & \quad + \frac{1}{R}B_{66} \frac{{\partial \phi_{\theta } }}{\partial x}\sin \beta + \frac{1}{{R^{2} }}B_{22} \frac{{\partial^{2} \phi_{\theta } }}{{\partial \theta^{2} }} + \left( {\frac{1}{R}KA_{44} \cos \beta - \frac{1}{{R^{2} }}B_{66} \sin^{2} \beta } \right)\phi_{\theta } , \\ \end{aligned}$$
(22)
$$L_{2R} = I_{0} \ddot{v}_{0} + I_{1} \ddot{\phi }_{\theta },$$
(23)
$$\begin{aligned} L_{3L} = & \frac{2}{{R^{2} }}B_{66} \frac{{\partial^{2} w_{0} }}{\partial x\partial \theta }\frac{{\partial \phi_{x} }}{\partial \theta } + \frac{1}{2R}A_{11} \left( {\frac{{\partial w_{0} }}{\partial x}} \right)^{3} \sin \beta - \frac{1}{R}N_{\theta \theta }^{T} \cos \beta + \frac{1}{R}\left( {B_{11} + B_{22} } \right)\frac{{\partial \phi_{x} }}{\partial x}\frac{{\partial w_{0} }}{\partial x} \\ & \quad + A_{11} \frac{{\partial^{2} u_{0} }}{{\partial x^{2} }}\frac{{\partial w_{0} }}{\partial x} - \frac{1}{{R^{2} }}A_{66} \frac{{\partial v_{0} }}{\partial \theta }\frac{{\partial w_{0} }}{\partial x}\sin \beta - \frac{1}{{R^{3} }}(A_{12} + A_{66} )\frac{{\partial^{2} w_{0} }}{{\partial \theta^{2} }}\frac{{\partial w_{0} }}{\partial x} + B_{11} \frac{{\partial^{2} \phi_{x} }}{{\partial x^{2} }}\frac{{\partial w_{0} }}{\partial x} \\ & \quad + \frac{2}{{R^{2} }}(A_{12} + 2A_{66} )\frac{{\partial^{2} w_{0} }}{\partial x\partial \theta }\frac{{\partial w_{0} }}{\partial \theta }\frac{{\partial w_{0} }}{\partial x} + \frac{1}{R}(B_{12} + B_{66} )\frac{{\partial^{2} \phi_{\theta } }}{\partial x\partial \theta }\frac{{\partial w_{0} }}{\partial x} + \frac{1}{{R^{2} }}A_{66} \frac{{\partial^{2} u_{0} }}{{\partial \theta^{2} }}\frac{{\partial w_{0} }}{\partial x} \\ & \quad + \frac{1}{{2R^{2} }}(A_{12} + 2A_{66} )\frac{{\partial^{2} w_{0} }}{{\partial \theta^{2} }}\left( {\frac{{\partial w_{0} }}{\partial x}} \right)^{2} + \frac{1}{R}\left( {KA_{55} + N_{xx}^{T} } \right)\frac{{\partial w_{0} }}{\partial x}\sin \beta + \frac{3}{2}A_{11} \frac{{\partial^{2} w_{0} }}{{\partial x^{2} }}\left( {\frac{{\partial w_{0} }}{\partial x}} \right)^{2} \\ & \quad - \frac{1}{{R^{2} }}B_{66} \frac{{\partial \phi_{\theta } }}{\partial x}\frac{{\partial w_{0} }}{\partial x}\sin \beta + \frac{1}{2R}A_{12} \left( {\frac{{\partial w_{0} }}{\partial x}} \right)^{2} \cos \beta + \frac{1}{R}(A_{11} + A_{12} )\frac{{\partial w_{0} }}{\partial x}\frac{{\partial u_{0} }}{\partial x}\sin \beta \\ & \quad + \frac{1}{R}A_{12} \frac{{\partial^{2} w_{0} }}{{\partial x^{2} }}w_{0} \cos \beta + \frac{1}{{R^{2} }}A_{12} \frac{{\partial^{2} w_{0} }}{{\partial \theta^{2} }}\frac{{\partial u_{0} }}{\partial x} + A_{11} \frac{{\partial^{2} w_{0} }}{{\partial x^{2} }}\frac{{\partial u_{0} }}{\partial x} + \frac{1}{R}B_{12} \frac{{\partial^{2} w_{0} }}{{\partial x^{2} }}\phi_{x} \sin \beta \\ & \quad + \frac{2}{R}A_{66} \frac{{\partial^{2} w_{0} }}{\partial x\partial \theta }\frac{{\partial v_{0} }}{\partial x} - \frac{1}{{R^{2} }}A_{66} \frac{{\partial w_{0} }}{\partial \theta }\frac{{\partial v_{0} }}{\partial x} + \frac{1}{{R^{3} }}A_{22} \frac{{\partial^{2} w_{0} }}{{\partial \theta^{2} }}w_{0} \cos \beta - A_{12} \frac{{\partial u_{0} }}{\partial x}\cos \beta \\ & \quad - \frac{1}{{R^{2} }}A_{22} w_{0} \cos \beta + \frac{1}{{R^{3} }}B_{22} \frac{{\partial^{2} w_{0} }}{{\partial \theta^{2} }}\phi_{x} \sin \beta + \frac{1}{R}(A_{12} + A_{66} )\frac{{\partial^{2} v_{0} }}{\partial x\partial \theta }\frac{{\partial w_{0} }}{\partial x} \\ & \quad + \left( {\frac{1}{R}KA_{55} - \frac{1}{{R^{2} }}B_{22} \cos \beta } \right)\varphi_{x} \sin \beta + \frac{1}{{R^{3} }}B_{66} \frac{{\partial w_{0} }}{\partial \theta }\varphi_{\theta } \sin^{2} \beta - \frac{2}{{R^{2} }}B_{66} \frac{{\partial^{2} w_{0} }}{\partial x\partial \theta }\varphi_{\theta } \sin \beta \\ & \quad + \frac{1}{{R^{3} }}A_{22} \frac{{\partial^{2} w_{0} }}{{\partial \theta^{2} }}u_{0} \sin \beta - \frac{1}{{R^{2} }}A_{22} u_{0} \sin \beta \cos \beta + \frac{1}{{R^{3} }}\left( {B_{22} - B_{66} } \right)\frac{{\partial \phi_{x} }}{\partial \theta }\frac{{\partial w_{0} }}{\partial \theta } - \gamma \dot{w}_{0} \\ & \quad - \frac{2}{{R^{2} }}A_{66} \frac{{\partial^{2} w_{0} }}{\partial x\partial \theta }v_{0} \sin \beta + \left( {KA_{55} + N_{xx}^{T} - (p_{0} + p_{1} \cos \varOmega_{2} t)} \right)\frac{{\partial^{2} w_{0} }}{{\partial x^{2} }} + \frac{1}{R}A_{66} \frac{{\partial^{2} v_{0} }}{{\partial x^{2} }}\frac{{\partial w_{0} }}{\partial \theta } \\ & \quad + \frac{1}{{R^{3} }}A_{66} \frac{{\partial^{2} v_{0} }}{{\partial \theta^{2} }} + \frac{1}{R}A_{12} \frac{{\partial^{2} w_{0} }}{{\partial x^{2} }}u_{0} \sin \beta + \frac{1}{{R^{3} }}A_{66} \frac{{\partial w_{0} }}{\partial \theta }v_{0} \sin^{2} \beta + \frac{1}{R}B_{66} \frac{{\partial^{2} \phi_{\theta } }}{{\partial x^{2} }}\frac{{\partial w_{0} }}{\partial \theta } \\ & \quad + \frac{1}{{R^{2} }}\left( {KA_{44} + N_{\theta \theta }^{T} } \right)\frac{{\partial^{2} w_{0} }}{{\partial \theta^{2} }} + \frac{1}{R}A_{12} \frac{{\partial^{2} w_{0} }}{{\partial x^{2} }}\frac{{\partial v_{0} }}{\partial \theta } + \frac{1}{{R^{3} }}A_{22} \frac{{\partial^{2} w_{0} }}{{\partial \theta^{2} }}\frac{{\partial v_{0} }}{\partial \theta } + KA_{55} \frac{{\partial \phi_{x} }}{\partial x}\frac{{\partial w_{0} }}{\partial \theta } \\ & \quad - \frac{1}{{R^{2} }}(KA_{44} + A_{22} )\frac{{\partial v_{0} }}{\partial \theta }\cos \beta + B_{11} \frac{{\partial^{2} w_{0} }}{{\partial x^{2} }}\frac{{\partial \varphi_{x} }}{\partial x} - \frac{1}{R}B_{12} \frac{{\partial \varphi_{x} }}{\partial x}\cos \beta + \frac{1}{{R^{2} }}B_{12} \frac{{\partial^{2} w_{0} }}{{\partial \theta^{2} }}\frac{{\partial \varphi_{x} }}{\partial x} \\ & \quad + \frac{3}{{2R^{4} }}A_{22} \frac{{\partial^{2} w_{0} }}{{\partial \theta^{2} }}\left( {\frac{{\partial w_{0} }}{\partial \theta }} \right)^{2} + \frac{2}{{R^{2} }}A_{66} \frac{{\partial^{2} w_{0} }}{\partial x\partial \theta }\frac{{\partial u_{0} }}{\partial \theta } + \frac{1}{{R^{2} }}\left( {B_{12} + B_{66} } \right)\frac{{\partial^{2} \phi_{x} }}{\partial x\partial \theta }\frac{{\partial w_{0} }}{\partial \theta } \\ & \quad + \frac{1}{{R^{2} }}B_{66} \frac{{\partial^{2} \phi_{x} }}{{\partial \theta^{2} }}\frac{{\partial w_{0} }}{\partial x} + \frac{1}{{2R^{3} }}A_{22} \frac{{\partial^{2} w_{0} }}{{\partial \theta^{2} }}\cos \beta + \frac{2}{R}B_{66} \frac{{\partial^{2} w_{0} }}{\partial x\partial \theta }\frac{{\partial \phi_{\theta } }}{\partial x} + \frac{1}{{R^{3} }}B_{22} \frac{{\partial^{2} \phi_{\theta } }}{{\partial \theta^{2} }}\frac{{\partial w_{0} }}{\partial \theta } \\ & \quad + \frac{1}{{R^{2} }}(A_{12} + A_{66} )\frac{{\partial^{2} u_{0} }}{\partial x\partial \theta }\frac{{\partial w_{0} }}{\partial \theta } - \frac{1}{{R^{2} }}B_{66} \frac{{\partial w_{0} }}{\partial \theta }\frac{{\partial \varphi_{\theta } }}{\partial x}\sin \beta + \frac{1}{{R^{3} }}(A_{22} - A_{66} )\frac{{\partial w_{0} }}{\partial \theta }\frac{{\partial u_{0} }}{\partial \theta }\sin \beta \\ & \quad + \frac{1}{2R}(A_{12} + 2A_{66} )\frac{{\partial^{2} w_{0} }}{{\partial x^{2} }}\left( {\frac{{\partial w_{0} }}{\partial \theta }} \right)^{2} + F\cos \varOmega_{1} t, \\ \end{aligned}$$
(24)
$$L_{3R} = I_{0} \ddot{w}_{0} ,$$
(25)
$$\begin{aligned} L_{4L} = & \, B_{11} \frac{{\partial^{2} u_{0} }}{{\partial x^{2} }} + \frac{1}{{R^{2} }}B_{66} \frac{{\partial^{2} u_{0} }}{{\partial \theta^{2} }} + \frac{1}{R}B_{11} \frac{{\partial u_{0} }}{\partial x}\sin \beta - \frac{1}{{R^{2} }}B_{22} u_{0} \sin^{2} \beta + \frac{1}{R}(D_{12} + D_{66} )\frac{{\partial^{2} \phi_{x} }}{\partial x\partial \theta } \\ & \quad + \frac{1}{R}(B_{12} + B_{66} )\frac{{\partial^{2} v_{0} }}{\partial x\partial \theta } - \frac{1}{{R^{2} }}(B_{22} + B_{66} )\frac{{\partial v_{0} }}{\partial \theta }\sin \beta + \frac{1}{2R}(B_{11} - B_{12} )\frac{{\partial^{2} w_{0} }}{{\partial x^{2} }}\sin \beta \\ & \quad + \frac{1}{R}B_{12} \frac{{\partial w_{0} }}{\partial x}\cos \beta + B_{11} \frac{{\partial^{2} w_{0} }}{{\partial x^{2} }}\frac{{\partial w_{0} }}{\partial x} + \frac{1}{{R^{2} }}B_{66} \frac{{\partial^{2} w_{0} }}{{\partial \theta^{2} }}\frac{{\partial w_{0} }}{\partial x} - KA_{55} \frac{{\partial w_{0} }}{\partial x} + \frac{1}{{R^{2} }}D_{66} \frac{{\partial^{2} \phi_{x} }}{{\partial \theta^{2} }} \\ & \quad - \frac{1}{{R^{2} }}B_{22} w_{0} \sin \beta \cos \beta + \frac{1}{R}D_{11} \frac{{\partial \phi_{x} }}{\partial x}\sin \beta - \frac{1}{{2R^{2} }}(B_{12} + B_{22} )\frac{{\partial^{2} w_{0} }}{{\partial \theta^{2} }}\sin \beta + D_{11} \frac{{\partial^{2} \phi_{x} }}{{\partial x^{2} }} \\ & \quad + \frac{1}{{R^{2} }}(B_{12} + B_{66} )\frac{{\partial^{2} w_{0} }}{\partial x\partial \theta }\frac{{\partial w_{0} }}{\partial \theta } - \left( {KA_{55} + \frac{1}{{R^{2} }}D_{22} } \right)\phi_{x} - \frac{1}{{R^{2} }}(D_{22} + D_{66} )\frac{{\partial \phi_{\theta } }}{\partial \theta }\sin \beta \\ & \quad + \frac{1}{R}M_{xx}^{T} \sin \beta - \frac{1}{R}M_{\theta \theta }^{T} \sin \beta , \\ \end{aligned}$$
(26)
$$L_{4R} = I_{1} \ddot{u}_{0} + I_{2} \ddot{\phi }_{x},$$
(27)
$$\begin{aligned} L_{5L} = & \frac{1}{R}(B_{12} + B_{66} )\frac{{\partial^{2} u_{0} }}{\partial x\partial \theta } + \frac{1}{{R^{2} }}(B_{22} + B_{66} )\frac{{\partial u_{0} }}{\partial \theta }\sin \beta + B_{66} \frac{{\partial^{2} v_{0} }}{{\partial x^{2} }} + \frac{1}{{R^{2} }}B_{22} \frac{{\partial^{2} v_{0} }}{{\partial \theta^{2} }} \\ & \quad + \left( {\frac{1}{R}KA_{44} \cos \beta - \frac{1}{{R^{2} }}B_{66} \sin^{2} \beta } \right)v_{0} + \frac{1}{{R^{2} }}\left( {D_{22} + D_{66} } \right)\frac{{\partial \phi_{\theta } }}{\partial \theta } + \frac{1}{{R^{2} }}B_{66} \frac{{\partial w_{0} }}{\partial x}\frac{{\partial w_{0} }}{\partial \theta }\sin \beta \\ & \quad + \left( {\frac{1}{{R^{2} }}B_{22} \cos \beta - \frac{1}{R}KA_{44} } \right)\frac{{\partial w_{0} }}{\partial \theta } + \frac{1}{{R^{3} }}B_{22} \frac{{\partial^{2} w_{0} }}{{\partial \theta^{2} }}\frac{{\partial w_{0} }}{\partial \theta } + \frac{1}{R}B_{66} \frac{{\partial^{2} w_{0} }}{{\partial x^{2} }}\frac{{\partial w_{0} }}{\partial \theta } + \frac{1}{{R^{2} }}D_{22} \frac{{\partial^{2} \varphi_{\theta } }}{{\partial \theta^{2} }} \\ & \quad + \frac{1}{R}B_{66} \frac{{\partial v_{0} }}{\partial x}\sin \beta - \left( {KA_{44} + \frac{1}{{R^{2} }}D_{66} \sin^{2} \beta } \right)\phi_{\theta } + \frac{1}{R}\left( {B_{12} + B_{66} } \right)\frac{{\partial^{2} w_{0} }}{\partial x\partial \theta }\frac{{\partial w_{0} }}{\partial x} \\ & \quad + \frac{1}{R}(D_{12} + D_{66} )\frac{{\partial^{2} \phi_{x} }}{\partial x\partial \theta } + D_{66} \frac{{\partial^{2} \phi_{\theta } }}{{\partial x^{2} }} + \frac{1}{R}D_{66} \frac{{\partial \phi_{\theta } }}{\partial x}, \\ \end{aligned}$$
(28)
$$L_{5R} = I_{1} \ddot{v}_{0} + I_{2} \ddot{\phi }_{\theta }.$$
(29)

Appendix 2: Matrixes and Vectors of Eq. (19)

$$\varvec{W} = \left[ {\begin{array}{*{20}c} {w_{1} } & {w_{2} } \\ \end{array} } \right]^{T} ,\;\varvec{\mu}= \left[ {\begin{array}{*{20}c} {\mu_{1} } & 0 \\ 0 & {\mu_{2} } \\ \end{array} } \right],$$
(30)
$$\varvec{M} = \left[ {\begin{array}{*{20}c} {\xi_{10} } & 0 \\ 0 & {\xi_{20} } \\ \end{array} } \right],\,\varvec{P} = \left[ {\begin{array}{*{20}c} {\xi_{18} } & 0 \\ 0 & {\xi_{28} } \\ \end{array} } \right](p_{0} + p_{1} \cos \varOmega_{2} t),$$
(31)
$$\varvec{NL} = \xi \left[ {\begin{array}{*{20}c} {w_{1}^{3} } & {w_{1}^{2} w_{2} } & {w_{1}^{2} } & {w_{1} w_{2} } & {w_{2}^{2} } & {w_{1} w_{2}^{2} } & {w_{2}^{3} } \\ \end{array} } \right]^{\text{T}} ,$$
(32)

where

$$\xi = \left[ {\begin{array}{*{20}c} {\xi_{11} } & {\xi_{12} } & {\xi_{13} } & {\xi_{14} } & {\xi_{15} } & {\xi_{16} } & {\xi_{17} } \\ {\xi_{21} } & {\xi_{22} } & {\xi_{23} } & {\xi_{24} } & {\xi_{25} } & {\xi_{26} } & {\xi_{27} } \\ \end{array} } \right],$$
(33)
$$\varvec{C} = \left[ {\begin{array}{*{20}c} {\xi_{1} } & {\xi_{2} } \\ \end{array} } \right]^{\text{T}} ,\;\varvec{F} = \left[ {\begin{array}{*{20}c} {\xi_{19} F_{1} } & 0 \\ 0 & {\xi_{29} F_{2} } \\ \end{array} } \right].$$
(34)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Y.X., Niu, Y., Zhang, W. et al. Nonlinear Vibrations of FGM Circular Conical Panel Under In-Plane and Transverse Excitation. J. Vib. Eng. Technol. 6, 453–469 (2018). https://doi.org/10.1007/s42417-018-0063-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-018-0063-y

Keywords

Navigation