Skip to main content
Log in

Analysis of nonlinear vibration response of a functionally graded truncated conical shell with piezoelectric layers

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The nonlinear vibration response of a functionally graded materials (FGMs) truncated conical shell with piezoelectric layers is analyzed. The vibration amplitude is suppressed by the positive and inverse piezoelectric effects. And the bifurcation phenomenon is described to reveal the motion state of the conical shell. Firstly, a truncated conical shell composed of three layers is described. And the effective material properties of the FG layer are defined by the Voigt model and the power law distribution. Next, the electric potentials of piezoelectric layers are defined as cosine distribution along the thickness direction. Meanwhile, the constant gain negative velocity feedback algorithm is used to suppress the vibration amplitude by the electric potential produced by the sensor layer. Thereafter, considering the first-order shear deformation theory and the von Karman nonlinearity, the relationship between the strain and displacement is defined. And the corresponding energy of the conical shell is calculated. After that, the motion equations of the conical shell are derived based on the Hamilton principle. Again, the nonlinear single degree of freedom equation is derived by the Galerkin method and the static condensation method. In the end, the nonlinear vibration response of FGMs truncated conical shell with piezoelectric layers under the external excitation is analyzed via using the harmonic balance method and the Runge-Kutta method. The effects of various parameters, such as ceramic volume fraction exponent, external excitation’s amplitude, control gain and geometric parameters on the nonlinear vibration response of the system are evaluated by case studies. Results indicate that the control gain plays an important role on the suppression of the vibration amplitude. The ceramic volume fraction exponents are not sensitive to the nonlinear vibration response compared with other parameters. The bifurcation behavior is observed under different parameters. The FGMs truncated conical shell with piezoelectric layers has three types of motion state, such as periodic motion, multi-periodic motion, and chaos motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

x :

Axial coordinate

θ :

Circumferential coordinate

z :

Radial coordinate

α 0 :

Semi-vertex angle

L :

Length of the conical shell

R 1 :

Radius of small end of the shell

R 2 :

Radius of large end of the shell

h s :

Thickness of sensor layer

h f :

Thickness of FG layer

h a :

Thickness of actuator layer

Γ :

Material property

Γ 1, Γ 2, Γ 3 :

Temperature sensitivity coefficients

T :

Temperature

Γ m, Γ c :

Material property of metal and ceramic

V m, V c :

Volume fractions of metal and ceramic

E xa, E ap, E za :

Components of electric field of actuator layer

E xs, E as, E zs :

Components of electric field of sensor layer

ϕ a, ϕ s :

Electric potential functions of actuator and sensor layers

φ a, φ s :

Electric potentials at the middle surface of actuator and sensor layers

z a, z s :

Local thickness coordinate of actuator and sensor layers

V :

External applied control voltage

G :

Control gain

H x, H θ, H z :

Lame coefficients

u, v, w :

Displacement components of any point

u 0, v 0, w 0 :

Displacement components on the middle surface

Φ x, Φ θ :

Transverse normal rotations

t :

Time variable

ε x, ε θ, γ xθ, γ xz, γ θz :

Strain components

σ x, σ θ, τ x θ, τ θz, τ xz :

Stress components

Q i j :

Equivalent stiffness

U s, U a :

Electric enthalpy

U f :

Strain energy

K :

Kinetic energy

W :

Work done by external load

F :

External excitation

Ω :

Excitation frequency

N :

Internal force

M :

Bending moment

Q :

Shear force

I :

Inertia coefficient

m :

Axial wave numbers

n :

Circumferential wave numbers

f :

Excitation amplitude

\(\bar w\), τ :

Dimensionless coefficients

χ :

Dimensionless amplitude

References

  1. Y. Obata and N. Nosa, Optimum material design for functionally gradient material plate, Archive of Applied Mechanics, 66 (8) (1996) 581–589.

    Article  MATH  Google Scholar 

  2. R. C. Wetherhold, S. Seelman and J. Wang, The use of functionally graded materials to eliminate or control thermal deformation, Composites Science and Technology, 56 (9) (1996) 1099–1104.

    Article  Google Scholar 

  3. A. H. Sofiyev and N. Kuruoglu, On a problem of the vibration of functionally graded conical shells with mixed boundary conditions, Composites Part B, 70 (2015) 122–130.

    Article  Google Scholar 

  4. S. W. Yang, Y. X. Hao, W. Zhang and S. B Li, Nonlinear dynamic behavior of functionally graded truncated conical shell under complex loads, International Journal of Bifurcation and Chaos, 25 (2) (2015) 1550025–33.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. W. Yang, Y. X. Hao, L. Yang and L. T. Liu, Nonlinear vibrations and chaotic phenomena of functionally graded material truncated conical shell subject to aerodynamic and in-plane loads under 1:2 internal resonance relation, Archive of Applied Mechanics, 91 (3) (2021) 1–35.

    Google Scholar 

  6. A. Berkani, N. Tatar and A. Khemmoudj, Control of a viscoelastic translational Euler-Bernoulli beam, Mathematical Methods in the Applied Sciences, 40 (1) (2017) 237–254, DOI: https://doi.org/10.1002/mma.3985.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Berkani, Stabilization of a viscoelastic rotating Euler-Bernoulli beam, Mathematical Methods in the Applied Sciences, 41 (8) (2018) 2939–2960, DOI: https://doi.org/10.1002/mma.4793.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Berkani, N. Tatar and A. Kelleche, Vibration control of a viscoelastic translational Euler-Bernoulli beam, Journal of Dynamical and Control Systems, 24 (1) (2018) 167–199, DOI: https://doi.org/10.1007/s10883-017-9364-9.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Berkani and N. Tatar, Stabilization of a viscoelastic Timoshenko beam fixed into a moving base, Mathematical Modelling of Natural Phenomena, 14 (5) (2019) DOI: https://doi.org/10.1051/mmnp/2018057.

  10. A. Berkani, Exponential stability of a rotating Timoshenko beam under thermo-viscoelastic damping, International Journal of Computer Mathematics (2021) 426–445.

  11. S. Kapuria and M. Y. Yasin, Active vibration suppression of multilayered plates integrated with piezoelectric fiber reinforced composites using an efficient finite element model, Journal of Sound and Vibration, 329 (16) (2010) 3247–3265.

    Article  Google Scholar 

  12. H. S. Tzou and M. Gadre, Theoretical analysis of a multi-layered thin shell coupled with piezoelectric shell actuators for distributed vibration controls, Journal of Sound and Vibration, 132 (3) (1989) 433–450.

    Article  Google Scholar 

  13. Y. H. Dong, Y. H. Li, X. Y. Li and J. Yang, Active control of dynamic behaviors of graded graphene reinforced cylindrical shells with piezoelectric actuator/sensor layers, Applied Mathematical Modelling, 82 (2020) 252–270.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. B. Li, X. Wang and J. B. Chen, Nonlinear electro-mechanical coupling vibration of corrugated graphene/piezoelectric laminated structures, International Journal of Mechanical Sciences, 150 (2018) 705–714.

    Article  Google Scholar 

  15. C. Liu and W. G. Liu, Analysis of the modal frequency of a functionally graded cylindrical shell, Journal of Mechanical Science and Technology, 35 (3) (2021) 889–903.

    Article  Google Scholar 

  16. M. Rout, S. Pani and J. Mahakud, A solution to free vibration of rotating pretwisted functionally graded conical shell under nonlinear thermal environments, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43 (6) (2021) 1–16.

    Article  Google Scholar 

  17. A. J. M. Ferreira, R. C. Batra, C. M. C. Roque, L. F. Qian and R. M. N. Jorge, Natural frequencies of functionally graded plates by a meshless method, Composite Structures, 75 (1) (2006) 593–600.

    Article  Google Scholar 

  18. M. Nejati, A. Asanjarani, R. Dimitri and F. Tornabene, Static and free vibration analysis of functionally graded conical shells reinforced by carbon nanotubes, International Journal of Mechanical Sciences, 130 (2017) 383–398.

    Article  Google Scholar 

  19. C. T. Loy, K. Y. Lam and J. N. Reddy, Vibration of functionally graded cylindrical shells, International Journal of Mechanical Sciences, 41 (3) (1999) 309–324.

    Article  MATH  Google Scholar 

  20. X. Liang, X. Zha, Y. Yu, Z. Cao, X. Jiang and J. Leng, Semi-analytical vibration analysis of FGM cylindrical shells surrounded by elastic foundations in a thermal environment, Composite Structures, 233 (2019) 110997.1-110997.11.

    Article  Google Scholar 

  21. Z. Y. Qin, S. N. Zhao, X. J. Pang, B. Safaei and F. L. Chu, A unified solution for vibration analysis of laminated functionally graded shallow shells reinforced by graphene with general boundary conditions, International Journal of Mechanical Sciences, 170 (2020) 105341.

    Article  Google Scholar 

  22. J. N. Reddy, A general non-linear third-order theory of plates with moderate thickness, International Journal of Non-Linear Mechanics, 25 (6) (1990) 677–686.

    Article  MATH  Google Scholar 

  23. Y. Q. Wang and J. W. Zu, Nonlinear dynamics of functionally graded material plates under dynamic liquid load and with longitudinal speed, International Journal of Applied Mechanics, 9 (4) (2017) 1750054.

    Article  Google Scholar 

  24. S. W. Yang, Y. X. Hao, W. Zhang, L. Yang and L. T. Liu, Nonlinear vibration of functionally graded graphene platelet-reinforced composite truncated conical shell using first-order shear deformation theory, Applied Mathematics and Mechanics (English Edition), 42 (7) (2021) 981–998.

    Article  MathSciNet  MATH  Google Scholar 

  25. Y. F. Liu, Z. Y. Qin and F. L. Chu, Nonlinear dynamic responses of sandwich functionally graded porous cylindrical shells embedded in elastic media under 1:1 internal resonance, Applied Mathematics and Mechanics (English Edition), 42 (6) (2021) 805–818.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Esmaeilzadeh, M. Kadkhodayan, S. Mohammadi and G. J. Turvey, Nonlinear dynamic analysis of moving bilayer plates resting on elastic foundations, Applied Mathematics and Mechanics (English Edition), 41 (3) (2020) 439–458.

    Article  MathSciNet  Google Scholar 

  27. Y. F. Liu, Z. Y. Qin and F. L. Chu, Nonlinear forced vibrations of FGM sandwich cylindrical shells with porosities on an elastic substrate, Nonlinear Dynamics, 104 (2) (2021) 1007–1021.

    Article  Google Scholar 

  28. N. D. Duc, Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy’s third-order shear deformation shell theory, European Journal of Mechanics - A/Solids, 58 (2016) 10–30.

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Kitipornchai, J. Yang and K. M. Liew, Semi-analytical solution for nonlinear vibration of laminated FGM plates with geometric imperfections, International Journal of Solids and Structures, 41 (9) (2004) 2235–2257.

    Article  MATH  Google Scholar 

  30. H. S. Shen and D. Q. Yang, Nonlinear vibration of functionally graded fiber-reinforced composite laminated cylindrical shells in hygrothermal environments, Applied Mathematical Modelling, 39 (5–6) (2015) 1480–1499.

    Article  MathSciNet  MATH  Google Scholar 

  31. H. S. Shen, Y. Xiang and Y. Fan, Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical shells in thermal environments, Composite Structures, 182 (2017) 447–456.

    Article  Google Scholar 

  32. Y. X. Hao, Z. N. Li, W. Zhang, S. B. Li and M. H. Yao, Vibration of functionally graded sandwich doubly curved shells using improved shear deformation theory, Science China Technological Sciences, 61 (6) (2018) 791–808.

    Article  Google Scholar 

  33. F. Ebrahimi, A. Rastgoo and M. N. Bahram, Investigating the thermal environment effects on geometrically nonlinear vibration of smart functionally graded plates, Journal of Mechanical Science and Technology, 24 (3) (2010) 775–791.

    Article  Google Scholar 

  34. G. G. Sheng and X. Wang, Studies on dynamic behavior of functionally graded cylindrical shells with PZT layers under moving loads, Journal of Sound and Vibration, 323 (3) (2009) 772–789.

    Article  Google Scholar 

  35. G. G. Sheng and X. Wang, Nonlinear vibration control of functionally graded laminated cylindrical shells, Composites Part B, 52 (2013) 1–10.

    Article  Google Scholar 

  36. S. K. Sarangi and M. C. Ray, Smart control of nonlinear vibrations of doubly curved functionally graded laminated composite shells under a thermal environment using 1–3 piezoelectric composites, International Journal of Mechanics and Materials in Design, 9 (3) (2013) 253–280.

    Article  Google Scholar 

  37. Y. Q. Wang, Y. F. Liu and T. H. Yang, Nonlinear thermoelectro-mechanical vibration of functionally graded piezoelectric nanoshells on Winkler-Pasternak foundations via nonlocal Donnell’s nonlinear shell theory, International Journal of Structural Stability and Dynamics, 19 (9) (2019) 133–140.

    Google Scholar 

  38. Y. F. Liu, Z. Y. Qin and F. L. Chu, Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermo-mechanical loads, International Journal of Mechanical Sciences, 201 (2021) 106474.

    Article  Google Scholar 

  39. H. S. Shen, Nonlinear vibration of shear deformable FGM cylindrical shells surrounded by an elastic medium, Composite Structures, 94 (3) (2012) 1144–1154.

    Article  Google Scholar 

  40. J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, Second Edition, CRC Press (2004).

  41. C. S. Zhu, X. Q. Fang, J. X. Liu and G. Q. Nie, Smart control of large amplitude vibration of porous piezoelectric conical sandwich panels resting on nonlinear elastic foundation, Composite Structures, 246 (2020) 112384.

    Article  Google Scholar 

  42. Z. P. Lyu, W. G. Liu, C. Liu, Y. H. Zhang and M. X. Fang, Thermo-electro-mechanical vibration and buckling analysis of a functionally graded piezoelectric porous cylindrical micro shell, Journal of Mechanical Science and Technology, 35 (10) (2021) 4655–4672.

    Article  Google Scholar 

  43. V. Balamurugan and S. Narayanan, Shell finite element for smart piezoelectric composite plate/shell structures and its application to the study of active vibration control, Finite Elements in Analysis and Design, 37 (2001) 713–738.

    Article  MATH  Google Scholar 

  44. G. Y. Jin, Z. Su, T. G. Ye and X. Z. Jia, Three-dimensional vibration analysis of isotropic and orthotropic conical shells with elastic boundary restraints, International Journal of Mechanical Sciences, 89 (2014) 207–221.

    Article  Google Scholar 

  45. H. F. Tiersten, Linear Piezoelectric Plate Vibrations, Plenum Press, New York, USA (1969).

    Book  Google Scholar 

  46. H. S. Shen, Y. Xiang and Y. Fan, Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical panels under axial compression in thermal environments, International Journal of Mechanical Sciences, 135 (2018) 398–409.

    Article  Google Scholar 

  47. A. Bayat, A. Jalali and H. Ahmadi, Nonlinear dynamic analysis and control of FG cylindrical shell fitted with piezoelectric layers, International Journal of Structural Stability and Dynamics, 21 (6) (2021) 2150083.

    Article  MathSciNet  Google Scholar 

  48. K. K. Guo, Dynamic Characteristics and Electricity Generation Performance of a Bistable Piezo-magneto-elastic Energy Harvester, Tianjin University (2015).

  49. K. M. Liew, T. Y. Ng and X. Zhao, Free vibration analysis of conical shells via the element-free kp-Ritz method, Journal of Sound and Vibration, 281 (2005) 627–645.

    Article  Google Scholar 

  50. Y. Kerboua, A. A. Lakis and M. Hmila, Vibration analysis of truncated conical shells subjected to flowing fluid, Applied Mathematical Modelling, 34 (3) (2010) 791–809.

    Article  MathSciNet  MATH  Google Scholar 

  51. K. K. Raju and G. V. Rao, Large amplitude asymmetric vibrations of some thin shells of revolution, Journal of Sound and Vibration, 44 (3) (1976) 327–333.

    Article  MATH  Google Scholar 

  52. M. Bakhtiari, A. A. Lakis and Y. Kerboua, Nonlinear vibration of truncated conical shells: Donnell, Sanders and Nemeth theories, International Journal of Nonlinear Sciences and Numerical Simulation, 21 (1) (2019) DOI: https://doi.org/10.1515/ijnsns-2018-0377.

  53. M. Mohammadimehr, M. Moradi and A. Loghman, Influence of the elastic foundation on the free vibration and buckling of thin-walled piezoelectric-based FGM cylindrical shells under combined loadings, Journal of Solid Mechanics, 6 (4) (2014) 347–365.

    Google Scholar 

Download references

Acknowledgments

This research work is supported by the National Natural Science Foundation of China (No. 51965042), the Postgraduate Innovation Fund Project of Nanchang Hangkong University (No. YC2021016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenguang Liu.

Additional information

Wenguang Liu received his Ph.D. degree from Nanjing University of Aeronautics and Astronautics, China. He is currently working as Full Professor in Nanchang Hangkong University, China.

Yuhang Zhang is currently studying as a graduate student in Nanchang Hangkong University, China. His research interests include the nonlinear vibration analysis of functionally graded smart structures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, W., Lyu, Z. et al. Analysis of nonlinear vibration response of a functionally graded truncated conical shell with piezoelectric layers. J Mech Sci Technol 36, 3897–3909 (2022). https://doi.org/10.1007/s12206-022-0712-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-022-0712-7

Keywords

Navigation