Skip to main content

Advertisement

Log in

Biological control of phytopathogens and insect pests in agriculture: an overview of 25 years of research in Uruguay

  • Review
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

Plants grow associated with complex communities of organisms, and their development depends largely on management practices, available nutrients in the soil, environmental conditions, and the balanced equilibrium established among all these factors. In unbalanced environments, diseases, insects, and weeds can decrease agricultural productivity or even destroy crops. There is great interest in developing effective and complementary strategies and approaches to include in the integrated management of phytopathogens and pests, such as the application of formulations containing microorganisms with biological control capabilities. In Uruguay, several groups have been studying microbes that can be used as biological control agents, and there has been a clear interest in the implementation of biocontrol strategies. In this regard, Uruguay has taken several steps towards more sustainable agricultural practices, such as the implementation of a registration procedure for biopesticides and biofertilizers, and the creation of the National Plan for Fostering Agroecological Production. A positive outcome of these actions is the increase from only 2 to 13 registered products in the last 10 years. Registered formulations are based on bacteria, fungi, and viruses, including antagonists of plant diseases and entomopathogens for the control of insect pests. More than half of the registered products contain organisms isolated in Uruguay. Additionally, Uruguay occupies the eighth position in the world ranking of land destined for organic production. This review presents a summary of the history and outcomes of biological control research in Uruguay on beneficial microorganisms (bacteria and fungi) able to antagonise and control phytopathogenic fungi, oomycetes, and insect pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Alonso R, Bettucci L (2009) First report of the pitch canker fungus fusarium circinatum affecting Pinus taeda seedlings in Uruguay. Australasian Plant Disease Notes 4:91–92

    Google Scholar 

  • Altier N, Thies JA (1995) Identification of resistance to Pythium seedling diseases in alfalfa using a culture plate method. Plant Dis 79(4):341–346

    Google Scholar 

  • Bagnasco P, De La Fuente L, Gualtieri G, Noya F, Arias A (1998) Fluorescent Pseudomonas spp. As biocontrol agents against forage legume root pathogenic fungi. Soil Biol Biochem 30:1317–1322

    CAS  Google Scholar 

  • Bajsa N, Quagliotto L, Yanes ML, Vaz P, Azziz G, de la Fuente L et al (2005) Selección de Pseudomonas fluorescentes nativas para controlar enfermedades de implantación en praderas. Agrociencia 9:321–325

    Google Scholar 

  • Bajsa N, Morel MA, Brana V, Castro-Sowinski S (2013) The Effect of Agricultural Practices on Resident Soil Microbial Communities: Focus on Biocontrol and Biofertilization. Molecular Microbial Ecology of the Rhizosphere Vo. 2. Bruijn, F. (ed) https://doi.org/10.1002/9781118297674.ch65

  • Baker BP, Green TA, Loker AJ (2020) Biological control and integrated pest management in organic and conventional systems. Biol Control 140. https://doi.org/10.1016/j.biocontrol.2019.104095

  • Behie SW, Zelisko PM, Bidochka MJ (2012) Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Sci (New York NY) 336:1576–1577

    CAS  Google Scholar 

  • Brunner-Mendoza C, Reyes-Montes MdR, Moonjely S, Bidochka MJ, Toriello C (2019) A review on the genus Metarhizium as an entomopathogenic microbial biocontrol agent with emphasis on its use and utility in Mexico. Biocontrol Sci Technol 29:83–102

    Google Scholar 

  • Cabrera M, Garmendia G, Rufo C, Pereyra S, Vero S (2020) Trichoderma atroviride como controlador biológico de fusariosis de espiga de trigo mediante la reducción del inóculo primario en rastrojo. Terra Latinoam 38:629–651

    Google Scholar 

  • Castelli L, Balbuena S, Branchiccela B, Zunino P, Liberti J, Engel P, Antúnez K (2021) Impact of chronic exposure to sublethal doses of glyphosate on Honeybee immunity, gut microbiota and infection by pathogens. Microorganisms 15(4):845. https://doi.org/10.3390/microorganisms9040845

    Article  CAS  Google Scholar 

  • Corallo B, Tiscornia S, Galvalisi U, Lupo S, Bettucci L (2017) Combined biological and chemical control of neotropical leaf-cutting ants (Acromyrmex spp.) under field conditions. Trends in Entomology 13:103–108

    Google Scholar 

  • Corallo B, Simeto S, Martínez G, Gómez D, Abreo E, Altier N et al (2019) Entomopathogenic fungi naturally infecting the eucalypt bronze bug, Thaumastocoris peregrinus (heteroptera: Thaumastocoridae), in Uruguay. J Appl Entomol 143:542–555

  • Corallo AB, Pechi E, Bettucci L, Tiscornia S (2021a) Biological control of the asian citrus psyllid, Diaphorina citri kuwayama (hemiptera: Liviidae) by entomopathogenic fungi and their side effects on natural enemies. Egypt J Biol Pest Control 31:15

    Google Scholar 

  • Corallo B, Bettucci L, Tiscornia S (2021b) Selection of Trichoderma strains for biological control of Fusarium nygamai in sorghum (sorghum bicolor L. Moench). Revista Colombiana de Investigaciones Agroindustriales 8:11–22

    Google Scholar 

  • Costa A, Corallo B, Amarelle V, Stewart S, Pan D, Tiscornia S et al (2022) Paenibacillus sp. Strain uy79, isolated from a root nodule of Arachis villosa, displays a broad spectrum of antifungal activity. Appl Environ Microbiol 88:e01645–e01621

    CAS  Google Scholar 

  • de la Fuente L, Quagliotto L, Bajsa N, Fabiano E, Altier N, Arias A (2002) Inoculation with Pseudomonas fluorescens biocontrol strains does not affect the symbiosis between rhizobia and forage legumes. Soil Biol Biochem 34:545–548

    Google Scholar 

  • de la Fuente L, Thomashow L, Weller D, Bajsa N, Quagliotto L, Chernin L et al (2004) Pseudomonas fluorescens up61 isolated from birds foot trefoil rhizosphere produces multiple antibiotics and exerts a broad spectrum of biocontrol activity. Eur J Plant Pathol 110:671–681

    Google Scholar 

  • DIEA – MGAP (2022) Anuario Estadístico Agropecuario. Dirección de Estadística Agropecuaria del Ministerio de Ganadería Agricultura y Pesca, in: https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/comunicacion/publicaciones/anuario-estadistico-agropecuario-2022

  • Eljounaidi K, Lee SK, Bae H (2016) Bacterial endophytes as potential biocontrol agents of vascular wilt diseases – review and future prospects. Biol Control 103:62–68

    Google Scholar 

  • Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Köhl J et al (2012) Have biopesticides come of age? Trends Biotechnol 30:250–258

    CAS  Google Scholar 

  • Han Q, Ma Q, Chen Y, Tian B, Xu L, Bai Y et al (2020) Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME J 14:1915–1928

    CAS  Google Scholar 

  • Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96:190–194

    CAS  Google Scholar 

  • Helga W, Lernoud J (2019) The World of Organic Agriculture. Statistics and emerging Trends 2019. Research Institute of Organic Agriculture (FiBL), Frick, and IFOAM – Organics International, Bonn

    Google Scholar 

  • Höfte M, Altier N (2010) Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Res Microbiol 161:464–471

    Google Scholar 

  • Hong CE, Park JM (2016) Endophytic bacteria as biocontrol agents against plant pathogens: current state-of-the-art. Plant Biotechnol Rep 10:353–357

    Google Scholar 

  • Hulot JF, Hiller N (2021) Exploring the benefits of biocontrol for sustainable agriculture. A literature review on biocontrol in light of the European Green Deal, Institute for European Environmental Policy. In: https://ieep.eu/publications/exploring-the-benefits-of-biocontrol-for-sustainable-agriculture/#:~:text=explore%20sustainable%20alternatives.-,As%20a%20non%2Dchemical%20and%20targeted%20input%2 C%20biocontrol%20can%20offer,agronomic%20practices%20on%20plant%20health

  • INIA (2022) Bioinsumos: agricultura biológica y sustentable en su dimensión ambiental, social y productiva. Revista INIA, Informe Especial 71:61–75.

  • Jaber RL, Ownley B (2017) Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biol Control 116:36–45

    Google Scholar 

  • Jackson MA, Jaronski ST (2009) Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects. Mycol Res 113:842–850

    CAS  Google Scholar 

  • Jaronski ST, Mascarin GM (2017) Chapter 9 - mass production of fungal entomopathogens. In: Lacey LA (ed) Microbial control of insect and mite pests. Academic Press, pp 141–155

  • Junaid JM, Dar NA, Bhat TA, Bhat AH, Bhat MA (2013) Commercial Biocontrol Agents and their mechanism of action in the management of Plant Pathogens. Int J Mod Plant Anim Sci 1(2):39–57

    Google Scholar 

  • Kabaluk JT, Ericsson JD (2007) Metarhizium anisopliae seed treatment increases yield of field corn when applied for wireworm control. Agronomy J 99:1377–1381

  • Keyser CA, Thorup-Kristensen K, Meyling NV (2014) Metarhizium seed treatment mediates fungal dispersal via roots and induces infections in insects. Fungal Ecol 11:122–131

    Google Scholar 

  • Latz MCA, Jensen B, Collinge DB, Jørgensen HJL (2018) Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression. Plant Ecol Divers 11:5–6. https://doi.org/10.1080/17550874.2018.1534146

    Article  Google Scholar 

  • Legein M, Smets W, Vandenheuvel D, Eilers T, Muyshondt B, Prinsen E et al (2020) Modes of action of microbial biocontrol in the phyllosphere. Front Microbiol 11:1619

    Google Scholar 

  • Leng P, Zhang Z, Pan G, Zhao M (2011) Applications and development trends in biopesticides. Afr J Biotechnol 10:19864–19873

    CAS  Google Scholar 

  • Liao X, O’Brien TR, Fang W, St Leger RJ (2014) The plant beneficial effects of Metarhizium species correlate with their association with roots. Appl Microbiol Biotechnol 98:7089–7096

    CAS  Google Scholar 

  • Lira ACd, Mascarin GM, Delalibera Júnior Í (2020) Microsclerotia production of Metarhizium spp. for dual role as plant biostimulant and control of Spodoptera frugiperda through corn seed coating. Fungal Biology 124:689–699

    Google Scholar 

  • Martínez-Hidalgo P, Hirsch AM (2017) The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes J 1:70–82

    Google Scholar 

  • MGAP (2021) Official communications from the Ministry of Livestock, Agriculture and Fisheries (MGAP) found in: https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/comunicacion/publicaciones/plan-nacional-para-fomento-produccion-bases-agroecologicas/plan-0

  • Modor Intelligence (2019) https://www.mordorintelligence.com/industry-reports/microbial-pesticides-market

  • Mondino P, Casanova L, Calero G, Betancur O, Alaniz S (2012) Zimevit: a biofungicide that combines the action of one bacteria and one yeast for the control of gray mold of grape caused by Botrytis cinerea. Revista Brasileira de Agroecologia 7:127–134

    Google Scholar 

  • Mondino P, Altier N, Vero S, Pereyra S, Folch C (2014) Control biológico de enfermedades de plantas en Uruguay. In: Bettiol W, Wagner M, Mondino P, Montealegre J, Colmenarez Y (eds) Control biológico de enfermedades de plantas en América Latina y el Caribe. Facultad de Agronomía, Universidad de la República, Uruguay

    Google Scholar 

  • Narayanasamy P (2013) Mechanisms of action of fungal biological control agents. Biological management of diseases of crops progress in biological control, vol 15. Springer, Dordrecht

    Google Scholar 

  • O’Callaghan M, Ballard RA, Wright D (2022) Soil microbial inoculants for sustainable agriculture: Limitations and opportunities. Soil Use Manag 38:1340–1369. https://doi.org/10.1111/sum.12811

    Article  Google Scholar 

  • Pan D, Mionetto A, Tiscornia S, Bettucci L (2015) Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat. Mycotoxin Res 31:137–143

    CAS  Google Scholar 

  • Partida-Martínez LP, Heil M (2011) The microbe-free plant: fact or artifact? Front Plant Sci 2:1–16

    Google Scholar 

  • Pereyra S, Garmendia G, Cabrera M, Vero S, Pianzzola M, Dill-Macky R (2005) Control biológico de la fusariosis de la espiga de trigo y cebada. Agrociencia 9:337–343

    Google Scholar 

  • Quagliotto L, Azziz G, Bajsa N, Vaz P, Pérez C, Ducamp F et al (2009) Three native Pseudomonas fluorescens strains tested under growth chamber and field conditions as biocontrol agents against damping-off in alfalfa. Biol Control 51:42–50

    Google Scholar 

  • Rebuffo M, Bemhaja M, Risso D (2006) Utilization of forage legumes in pastoral systems: state of art in Uruguay. Lotus Newsl 36:22–23

    Google Scholar 

  • Rivas F, Nuñez P, Jackson T, Altier N (2014) Effect of temperature and water activity on mycelia radial growth, conidial production and germination of Lecanicillium spp. Isolates and their virulence against Trialeurodes vaporariorum on tomato plants. Biocontrol 59:99–109

    Google Scholar 

  • Rivas-Franco F, Hampton JG, Morán-Diez ME, Narciso J, Rostás M, Wessman P et al (2019) Effect of coating maize seed with entomopathogenic fungi on plant growth and resistance against Fusarium graminearum and Costelytra giveni. Biocontrol Sci Technol 29:877–900

  • Rivas-Franco F, Hampton JG, Altier NA, Swaminathan J, Rostás M, Wessman P et al (2020a) Production of microsclerotia from entomopathogenic fungi and use in maize seed coating as delivery for biocontrol against Fusarium graminearum. Front Sustainable Food Syst 4. https://doi.org/10.3389/fsufs.2020.606828

  • Rivas-Franco F, Hampton JG, Narciso J, Rostás M, Wessman P, Saville DJ et al (2020b) Effects of a maize root pest and fungal pathogen on entomopathogenic fungal rhizosphere colonization, endophytism and induction of plant hormones. Biol Control 150:104347

    CAS  Google Scholar 

  • Rodríguez A, Chia E, Rossi V (2022) Biological control: lessons learned for agroecological transition in Uruguay.Agrociencia Uruguay26(NE3)

  • Roldán DM, Costa A, Králová S, Busse HJ, Amarelle V, Fabiano E et al (2022) Paenibacillus farraposensis sp. nov., isolated from a root nodule of Arachis villosa. Int J Syst Evol Microbiol 72(3)

  • Scarlato M, Dogliotti S, Bianchi FJJA, Rossing WAH (2022) Ample room for reducing agrochemical inputs without productivity loss: The case of vegetable production in Uruguay. Sci Total Environ 810:152248.

  • Sessa L, Pedrini N, Altier N, Abreo E (2022) Alkane-priming of Beauveria bassiana strains to improve biocontrol of the redbanded stink bug Piezodorus guildinii and the bronze bug Thaumastocoirs peregrinus. J Invertebr Pathol 187:107700. https://doi.org/10.1016/j.jip.2021.107700

    Article  CAS  Google Scholar 

  • Silvera-Pérez E, Gonzalez P, Di Candia M, Galván G, Mondino P, Scattolini A et al (1997) Control biológico de la mancha foliar y punta seca de la cebolla (Allium cepa) ocasionada por Botrytis squamosa en almácigo. In: Proceedings of the Congreso Latinoamericano de Fitopatologia, 1997. Montevideo, Uruguay, (Fitopatologia SUd ed)

  • Soria S, Alonso R, Bettucci L (2012) Endophytic bacteria from Pinus taeda L. as biocontrol agent of Fusarium circinatum Nirenberg & O’Donnell. Chil J Agricultural Res 72:281–284

    Google Scholar 

  • Spurgeon D, Lahive E, Robinson A, Short S, Kille P (2020) Species sensitivity to toxic substances: evolution, ecology and applications. Front Environ Sci 8:588380

    Google Scholar 

  • Tilocca B, Cao A, Migheli Q (2020) Scent of a killer: microbial volatilome and its role in the biological control of plant pathogens. Front Microbiol 11:41

    Google Scholar 

  • Tiscornia S, Lupo S, Corallo B, Sanchez A, Bettucci L (2014) Neotropical leaf-cutting ants (Acromyrmex spp.): biological control under laboratory and field conditions. Trends Entomology 10:55–62

    Google Scholar 

  • Vaz Jauri PV, Altier N, Pérez CA, Kinkel L (2018) Cropping history effects on pathogen suppressive and signalling dynamics in Streptomyces communities. Phytobiomes 2:14–23

    Google Scholar 

  • Vega FE (2018) The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia 110:4–30

    Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LSJArop (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Ann Rev Phytopathol 40:309–348

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    CAS  Google Scholar 

  • Yanes ML, Bajsa N (2016) Fluorescent Pseudomonas: A Natural Resource from Soil to Enhance Crop Growth and Health. In: Castro-Sowinski, S. (eds) Microbial Models: From Environmental to Industrial Sustainability. Microorganisms for Sustainability, vol 1. Springer, Singapore. 323–349

  • Yanes ML, Fernández A, Arias A, Altier N (2004) Método para evaluar protección contra Pythium debaryanum y promoción del crecimiento de alfalfa por Pseudomonas fluorescentes. Agrociencia 8:23–32

    Google Scholar 

  • Yanes ML, De La Fuente L, Altier N, Arias A (2012) Characterization of native fluorescent Pseudomonas isolates associated with alfalfa roots in uruguayan agroecosystems. Biol Control 63:287–295

    Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the following research organisations, financial agencies and research institutes: Programa Nacional de Desarrollo de las Ciencias Básicas (PEDECIBA), Agencia Nacional de Investigación e Innovación (ANII), Sistema Nacional de Investigadores (SNI), Instituto de Investigaciones Biológicas Clemente Estable – Ministerio de Educación y Cultura (IIBCE-MEC), Universidad de la República (UdelaR), Instituto Nacional de Investigación Agropecuaria (INIA), Ministerio de Ganadería, Agricultura y Pesca (MGAP), AgResearch (AgR), and Bioprotection Research Centre (BPRC), as well as the support of Karina Punschke (DGSA, MGAP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Rivas-Franco.

Ethics declarations

Competing interests

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Financial interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajsa, N., Fabiano, E. & Rivas-Franco, F. Biological control of phytopathogens and insect pests in agriculture: an overview of 25 years of research in Uruguay. Environmental Sustainability 6, 121–133 (2023). https://doi.org/10.1007/s42398-023-00275-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-023-00275-8

Keywords

Navigation